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Definition. A subset S of R" is called a subspace (of R™) if:

(1) 0e S.
(2) For all z € S, and A € R, Az is also in S.
(3) For all z,y € S, z +y is also in S.

Note that the second condition implies the first, so long as S is nonempty. Thus the
first condition is just there to ensure that a subspace is nonempty.

Fact 1. If S is a subspace of R” and zq,...,2; € S and A\1,...,\; € R, then
M+ F Mg €S
Ezample. Let A be an m X n matrix. Then
{z e R" | Az = 0}

is a subspace of R"™. This is called the null space of A and is denoted by null(A). On the
other hand,

{Az | x € R"}
is a subspace of R™, and is called the range space of A, written ran(A).

Definition. Let S be a subspace of R". A subset X C S of S is said to span S if for
every s € S, there are some x1,...,x; € X and Aq,..., \; € R such that

8:)\1$1+"'+>\kl'k
If X C R", then the span of X is the set
span(X) = { Mz + -+ Mg |k ENAz, . xp € X AN, .., €R}

This last definition provides us with a wealth of examples of subspaces of R".

Fact 2. If X is any subset of R” then span(X) is a subspace of R™.

It’s easy to see that if X CY C R", then span(X) C span(Y). However, the converse
doesn’t hold. In fact, we have the following example where X ¢ Y and Y € X, but
span(X) = span(Y).
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Ezample. Consider the following two finite subsets of R3.

1 1 0 1 1 2
X = ST I R I Y = S I R I
—2) \-1 ~1 —2) \-1 -3

Then we have span(X) = span(Y).

The proof of the above is made much easier using the following, which we call the
“linear combination lemma.”

Lemma 1. Let xq, ...,z € R™ be vectors in R™. If each of y1,...,ye is a linear combi-
nation of x1,...,xy then so is any linear combination of yi, ..., Y.

Proof. The hardest part of this proof is figuring out what the statement of the lemma is,
in formal terms. We have our vectors x1,...,x; € R"; suppose y1,...,ys are vectors in
R™, each of which is a linear combination of x1,..., zx;

yi:)\ﬂilil—i-""i‘)\ikl’k 1§Z§€

Now suppose z = p1y1 + - - - + peye is a linear combination of yy, ..., y,. Then,

¢
Z = Z HiYi
ljl .
= Z M Z )\z‘j%
i=1  j=1
k¢
= Z Z MMz’j%‘

j=1 i=1

k 4
= (Z Mi)\ij) Z;

j=1 \i=1

So z is also a linear combination of z1,. .., z;, namely the one whose coefficient for z; is

¢
Z i Nij
i—1

Lemma 2. Suppose S is a subspace of R", and X C S. Then span(X) C S.

Proof. Suppose y € span(X); then there are xy,..., 2, € X and A\, ..., Ay € R such that
Yy =ANxy+ -+ MNxp. But xq,..., 2, €5, and so
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Definition. If A is an m x n matrix with columns ¢, ...,c, € R™, and rows rq,...,7, €
R™, then we write
col(A) = span{cy, ..., c,} row(A) = span{ry,...,mm}

We call col(A) and row(A) the column space and row space of A, respectively.

Fact 3. If A is any matrix, then ran(A) = col(A).

Proof. Suppose A is m x n and ¢;...,c, € R™ are the column vectors of A. We've seen
before that if x € R™, then

Ax = xi01 + - + x50,
The right-hand side of the above equation is a member of col(A), since it’s a linear

combination of the columns of A. Since x € R™ was arbitrary, this shows ran(A) C col(A).
Now if y € col(A), then y is a linear combination of the columns of A, and hence for some

ALy ooy Ap €ER,
y=X a+-+ A
But then by the same fact,
M
y:>\161+"'+>\ncn:A :
An
and the right-hand side of this equation is in ran(A). This shows col(A) C ran(A). O

You might guess now, since row(A) and null(A) are both subspaces of R, that they are
equal; but you’d be wrong! They are related, but we won’t see how for a while yet. For
now, let’s see how we can phrase a problem related to spanning sets in terms of Gaussian
elimination.

Ezample. Let

0 9 3
1 4| [ =5
X=91=21"16|"| 7
3 o] \1

Is the vector b = ( > in the span of X7

~UTwN

To solve this, let

0 2 3
1 4 =5
A= -2 6 7
3 0 -1

Then b is in the span of X if and only if there is some 2 € R3 such that Az = b.



Example. Let X be the following set.

0 1 0
2.1 ],[ 2
1 ~1 1

Prove that span(X) = R3.

To prove this it suffices to prove that the following matrix is right-invertible;

0 1 0

A=12 1 2

1 -1 -1

for which it suffices to prove that A is fully invertible;
0 1 0 1 00
2 1 2 010
1 -1 -1 0 0 1
01 0 1 00
P2 — P2 — P1 90 92 11 0
pPs=>pstpi\y o 3 1 01
01 0 1 0 0
P2 — P2 — 2/)3 00 4 -3 1 =2
1 0 -1 1 0 1
o 1 0 -1 1 0 1
n o o 1 0 0
PLEZPs N0 0 4 -3 1 -2
1 00 1/4 1/4 1/2
ps = ps/t o1 g A

AV ~3/4 1/4 —1/)2

(I computed A™! above, but this is not necessary to prove that A is invertible; it just
suffices to show, since A is square, that A reduces to I.)



