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Lemma 1. If A is Hermitian, λ1, . . . , λk are the eigenvalues of A, and V = Vλ1⊕· · ·⊕Vλk ,
then V and V ⊥ are both invariant for A.

Theorem 1. If A is Hermitian, then A is diagonalizable by a unitary matrix.

Proof. Let’s say λ1, . . . , λk are the eigenvalues of A, without repeats, and their geometric
multiplicities are g1, . . . , gk. Let

V = Vλ1 ⊕ · · · ⊕ Vλk
The lemma we proved yesterday tells us that V and V ⊥ are both invariant for A.

Let vi1, . . . , v
i
gi
be an orthonormal basis for Vλi ; then the list

v11, . . . , v
1
g1
, v21, . . . , v

2
g2
, . . . , vk1 , . . . , v

k
gk

is an orthonormal basis for V . Let m =
∑
gi. Then dim(V ) = m, so dim(V ⊥) = n−m.

If m = n, then we’re done, for the above list of eigenvectors must be a basis for
Cn, and a theorem we’ve stated before (but not proven) says that this is equivalent
to diagonalizability. In the remainder of the proof we will assume that m < n, and
eventually get a contradiction. The work we do therein will also show how to see that A
is diagonalizable when m = n, so if you didn’t believe the theorem before, that should
convince you.

Let w1, . . . , wn−m be an orthonormal basis for V ⊥; then

v11, . . . , v
1
g1
, v21, . . . , v

2
g2
, . . . , vk1 , . . . , v

k
gk
, w1, . . . , wn−m

is an orthonormal basis for Cn. Label these vectors u1, . . . , un, in the order above, and
let U be the unitary matrix whose columns are u1, . . . , un.

Now consider the matrix UHAU . Its (i, j)-entry is〈
UHAUej, ei

〉
= 〈AUej, Uei〉 = 〈Auj, ui〉

Let’s work out what these entries are in the various cases.
1



ui
〈Auj, ui〉 v1p v2p · · · vkp wp

v1q λ1 0 · · · 0 0
v2q 0 λ2 · · · 0 0

uj
...

. . .

vkq 0 0 · · · λk 0
wq 0 0 · · · 0 〈Awq, wp〉

It follows that

UHAU =


λ1Ig1

λ2Ig2
. . .

λkIgk
Â


where Â is the n−m× n−m matrix with entries 〈Awj, wi〉. Now as we’ve seen before,
pA and pUHAU are the same. But clearly,

pUHAU(z) = (z − λ1)g1 · · · (z − λk)gk det(zIn−m − Â)

Since the roots of pUHAU and pA are the same, and λ1, . . . , λk are the roots of pA, it follows
that

pÂ(z) = det(zIn−m − Â) = (z − λ1)a1 · · · (z − λk)ak

where ai is the algebraic multiplicity of λi with respect to Â. (Note that ai may be 0.)

Let v̂ be an eigenvector of Â. (We’re using here our assumption that m < n, to even

talk about Â; if m = n then its size would be “0× 0”.) Let v be the vector

v = U



0
0
...
0
v̂1
...

v̂n−m





It follows that v is an eigenvector of A, with eigenvalue the same as that of v̂ with respect
to Â. But, if p ≤ m,

〈v, up〉 =

〈
U



0
...
0
...
0
v̂1
...

v̂n−m


, Uep

〉
=

〈


0
...
0
...
0
v̂1
...

v̂n−m


,



0
...
1
...
0
0
...
0



〉
= 0

so v ⊥ up for all p ≤ m. But then v is orthogonal to every eigenspace of A (since up, for
p ≤ m, lists basis vectors for all the eigenspaces of A); in particular, if λi is the eigenvalue
associated to v, then v ⊥ Vλi . Then v = 0, but this is a contradiction. �


