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Let’s recall the rank-nullity theorem.

Theorem 1. (Rank-Nullity) Let A be an m × n matrix, and let R be any row-echelon
form of A. Say R has k nonzero rows, r1, . . . , rk, and the leading entry of ri appears in
column `i. (Since R is in row-echelon form, this means `1 < `2 < · · · < `k.) Let a1, . . . , an
be the columns of A, in that order. Then;

(1) {r1, . . . , rk} is a basis for row(A).
(2) {a`1 , . . . , a`k} is a basis for col(A).
(3) {s1, . . . , sn−k} is a basis for null(A), where si is the vector with a 1 in the entry

corresponding to the ith free variable, and a 0 in every entry corresponding to the
other free variables. (Note that since si must be in null(A), this determines the
rest of the entries in si.)

Proof for row-echelon A. We assume in this proof that A = R. Later we’ll deal with the
case where A is not already in row-echelon form.

Since the rows of R span row(R), and only the nonzero ones matter, it follows that
{r1, . . . , rk} spans row(R). So it suffices to show that this set is linearly independent. R
looks like this; 

0 · · · R1`1 · · · R1`2 · · · R1`k · · · R1n

R2`2 · · · R2`k · · · R2n

Rk`k · · · Rkn

0 · · · 0


Let λ1, . . . , λk ∈ R be given. Fix some i ≤ k. Then the `ith entry in the row vector

λ1r1 + · · ·+ λkrk

is exactly
λ1R1`i + · · ·+ λiRi`j + 0 + · · ·+ 0

since the `ith entry of rj is zero, whenever j > i. Now suppose

λ1r1 + · · ·+ λkrk = 0
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Then since
λ1R1`1 + 0 + · · ·+ 0 = 0

and R1`1 6= 0, it must be that λ1 = 0. Then

0 + λ2R2`2 + 0 + · · ·+ 0 = 0

and similarly it follows that λ2 = 0. Continuing in this way we find that λ1 = λ2 = · · · = 0,
and so r1, . . . , rk are linearly independent.

Similarly for col(R); if c1, . . . , cn are the columns of R, then the ith entry of the column
vector

λ1c`1 + · · ·+ λkc`k
is

0 + · · ·+ 0 + λiRi`i + λi+1Ri+1,`i+1
+ · · ·+ λkRk`k

If this column vector is the zero vector, then recursively we find that λk = 0, λk−1 = 0,
etc. So {c`1 , c`2 , . . . , c`k} is linearly independent.

Now for null(R), let fi be the index of the ith free variable. Then for any µ1, . . . , µn−k ∈
R, the fith entry of the linear combination

µ1s1 + · · ·+ µn−ksn−k

is exactly µi, since si has a 1 in the fith entry and sj has a 0 in the fith entry for all
j 6= i. It follows that {s1, . . . , sn−k} is linearly independent. It spans null(R) by our
back-substitution algorithm. �

Lemma 1. If A and B are matrices such that AB is defined then row(AB) ⊆ row(B).

Corollary 1. If A and B are row-equivalent then row(A) = row(B).

Proof. If A and B are row-equivalent then there is an invertible matrix E (a product of
elementary matrices) such that B = EA. Then row(B) ⊆ row(A). But we also have
A = E−1B, so row(A) ⊆ row(B). �

Proof of (1) in Rank-Nullity. Since A and R are row-equivalent, row(A) = row(R). The
nonzero rows of R thus make up a basis of row(R) = row(A). �

Lemma 2. If A and B are row-equivalent then null(A) = null(B).

Proof of (3) in Rank-Nullity. Since A and R are row-equivalent, null(A) = null(R). Then
any basis for null(R) is also a basis for null(A). �

Lemma 3. Suppose A and B are row-equivalent and m × n. Say their columns are
a1, . . . , an and b1, . . . , bn respectively. If 1 ≤ j1 < · · · < jk ≤ n are any column indices,
then the following are equivalent;

(a) {aj1 , . . . , ajk} is linearly independent.
(b) {bj1 , . . . , bjk} is linearly independent.



Proof. Let A′ and B′ be the m×k submatrices of A and B, whose columns are aj1 , . . . , ajk
and bj1 , . . . , bjk respectively. Since A and B are row-equivalent, so are A′ and B′, by
the same row operations. So null(A′) = null(B′). The result follows. (How? Work it
out...) �

Proof of (2) in Rank-Nullity. Since A and R are row-equivalent and the pivot columns
of R are a basis for col(R), by Lemma 3 it follows that X = {a`1 , . . . , a`k} is linearly
independent, and adding any other column of A to X would make it linearly dependent.
Hence X is a basis for col(A). �

Definition. Let A be a matrix. The row rank of A is dim(row(A)). The column rank of
A is dim(col(A)). The nullity of A is dim(null(A)).

Corollary 2. The row rank of a matrix is the same as its column rank. We call this
common dimension the rank. If A is m× n, then rank(A) + nullity(A) = n.

Example. Let r be a row vector of length n and c a column vector of height n. Let A = rc
and B = cr. What is the rank of A? of B? What about the nullity?

Example. If A and B are both n × n, how are the rank of AB and BA related? What
about the nullity? Look at a 2× 2 example.

Example. Consider the n× n shift matrix;

S =


0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0

. . .
0 0 · · · 1 0


Calculate bases for null(St) and ran(St), where t ≥ 1.


