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1. Sets, logic, and proofs

21-241 is a mathematics course, so inevitably we will make use of mathematical concepts
introduced in the course 21-127, Concepts of Mathematics. Since this is not an official
prerequisite for the course, I will try to keep this to a minimum. If you’re confused about
one of these topics, you can come to me during office hours to talk about it; I also invite
you to consult [?]. I’ve included here a table defining some of the logical notation that
we’ll be using. Below, S is a set, and P and Q are logical statements.

Notation Definition Notes
x ∈ S “x is a member of S” Here x is a free variable.

{x ∈ S | P (x)} “the set of all x in S such that
P (x)”

N {0, 1, 2, . . .} The natural numbers. Note that 0 ∈ N!
Z {. . . ,−1, 0, 1, 2, . . .} The integers.
Q {p/q | p, q ∈ Z ∧ q 6= 0} The rationals.
R the set of all real numbers We can’t provide a true definition here..
C the set of all complex numbers
¬P “not P”
P ∧Q “P and Q”
P ∨Q “P or Q” This is an inclusive or, ie, if both P and Q are true,

then we still consider P ∨Q to be true.
P =⇒ Q “P implies Q” P =⇒ Q is considered a statement of its own,

with its own truth value, which I invite you to de-
duce from the truth values of P and Q. The case
when P is false is particularly interesting.

P ⇐⇒ Q “P if and only if Q” This is exactly the same as (P =⇒ Q) ∧ (Q =⇒
P ).

∀x P (x) “for all x, P (x)” Here and below x is a bound variable.
∃x P (x) “there exists an x such that

P (x)”
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2. Solving systems of linear equations

Consider the following chemistry problem (which I have lifted directly from Hefferon’s
book [?]). I’ve got x molecules of toluene, C7H8, and y molecules of nitric oxide, HNO3.
Putting them together, I can produce trinitrotoluene (TNT), which has the form C7H5O6N3,
with some water (H2O) byproduct. Say I produce z molecules of the first and w of the
second. I’d like to balance this equation;

xC7H8 + yHNO3 → zC7H5O6N3 + wH2O

That is, I’d like to find values of x, y, z, and w so that the number of atoms of each type
is the same before and after the reaction. Counting them each individually, this leads to
the following system of equations;

7x = 7z(1)

8x+ 1y = 5z + 2w(2)

1y = 3z(3)

3y = 6z + 1w(4)

Of course, we’re only interested in nonnegative integer values of x, y, z, w in this situation
(since these represent the number of molecules we’re dealing with), so we’ll have to watch
out for that when we’re searching for solutions. Equation (1) clearly implies x = z, and
so subtracting equation (3) from equation (2), we get

8z = 2z + 2w =⇒ 6z = 2w =⇒ w = 3z

So if (x, y, z, w) is any solution, then x = z, y = 3z, and w = 3z. Moreover, it’s easy
to check that no matter what choice I make for the value of z, then letting x = z and
y, w = 3z, I get a solution to the above system, and if z is a nonnegative integer then so
are x, y, and w. So I’ve found a solution; in fact, infinitely many!

In general, there is a straightforward process which will tell us all of the solutions to
a given system of linear equations, if there are any; and that there aren’t any, if there
aren’t any. This is called Gaussian elimination. To describe it I’ll need to formally define
some of the concepts we’ve been using informally up to now.

Definition 1. Let x1, . . . , xn be variables. A linear combination of x1, . . . , xn is an ex-
pression of the form a1x1 + · · · + anxn, where a1, . . . , an ∈ R. a1, . . . , an are called the
coefficients of the combination. A linear equation in variables x1, . . . , xn is an equation
of the form a1x1 + · · · anxn = b, where b ∈ R. b is called the constant of the equation.



A system of linear equations is simply a finite set of linear equations in the same
variables, e.g.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

A tuple (s1, . . . , sn) ∈ Rn is a solution to this system of equations if the equations obtained
by replacing xi by si for each i, in each equation, results in unanimously true statements.
If S is a system of linear equations then we write sol(S) for its set of solutions. So
sol(S) ⊆ Rn.

When a system of equations is written like the above, we often refer to the ith equa-
tion down as row i, or ρi. Of course, the order of the equations does not matter when
considering solutions; it only matters to our written system. The first term aijxj in row
i such that aij 6= 0 is called the leading term of that row, and aij the leading coefficient.
Note that a row may not have a leading term, e.g., if all of the coefficients are zero;

0x1 + 0x2 + · · ·+ 0xn = b

A system is in echelon form if the leading term of each row (except the first) is strictly
to the right of all the leading terms of the rows above it, and all of the rows without a
leading term are below the ones that are. Visually;

a1j1xj1 + · · ·+ a1j2xj2 + · · ·+ a1jixji + · · ·+ a1nxn = b1

a2j2xj2 + · · ·+ a2jixji + · · ·+ a2nxn = b2
...

aijixji + · · ·+ ainxn = bi

0 = bi+1

...

0 = bm

Here j1, j2, . . ., etc are the column indices of the leading terms in rows 1, 2, . . ., respectively,
and row i is the last with a leading term.

For instance, the following is in echelon form;

x− 2y + z = 0

z = 2



However, the following system is not in echelon form.

y + 3z = 1

−x− y − z = 0

5y − 2z = −1

The object of Gaussian elimination is to produce, through a series of operations on a
given system of linear equations, a final system which is in echelon form. There are three
different operations that we use;

• swap: Swapping two of the equations, written ρi ↔ ρj (where i 6= j).
• scaling: Multiplying some row by a nonzero number; ρi → λρi, where λ 6= 0.
• row combination: Replacing some row by the sum of itself with a multiple of

another row; ρi → ρi + λρj. Here λ may be zero but i and j must be different.

There is a systematic way of applying these operations to get a system in echelon form,
but first we need to know that they won’t change the solution set we’re after. This is
proven in the following theorem.

Theorem 1. If S is a system of linear equations and T is the result of applying one
of the above operations to S, then S and T have exactly the same set of solutions, ie,
sol(S) = sol(T ).

Proof. For clarity, let’s say S is the following system of linear equations;

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

To prove the theorem it suffices to show;

(1) If r ∈ Rn is a solution to S then r is also a solution to T .
(2) There is a row-operation which, when applied to T , produces S.

(1) proves that sol(S) ⊆ sol(T ); then, (2) and (1) prove together that sol(T ) ⊆ sol(S).



Let’s prove (1) first. Let (s1, . . . , sn) ∈ Rn be a solution to S. This means we have

a11s1 + a12s2 + · · ·+ a1nsn = b1
...

am1s1 + am2s2 + · · ·+ amnsn = bm

To fully prove (1) we’d have to handle three cases, according to which type of row operation
we applied to S to get T ; I’ll just do the row-combination case, since that’s the hardest.
So for some i 6= j and some λ ∈ R, T is the system

a11x1 + a12x2 + · · ·+ a1nxn = b1
...

(ai1x1 + · · · ainxn) + λ(aj1x1 + · · · ajnxn) = bi + λbj
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Since (s1, . . . , sn) is a solution to S, we have ai1s1+· · · ainsn = bi and aj1s1+· · · ajnsn = bj,
so

(ai1s1 + · · · ainsn) + λ(aj1s1 + · · · ajnsn) = bi + λbj

The other equations in T are the same as those in S. Hence (s1, . . . , sn) is a solution to
T .

Now we prove (2). This comes down to another proof by cases, based on which type of
row operation we applied to get T from S. I’ll write the row operation down along with
its reverse.

• To reverse a swap ρi ↔ ρj, we just apply the same swap again; ρi ↔ ρj.
• To reverse a row combination ρi → ρi + λρj we apply the row combination ρi →
ρi − λρj. (It’s implicit that i 6= j, here. Why is this important?)
• To reverse a scaling operation ρi → λρi, we apply ρi → 1

λ
ρi. (Here it’s implicit

that λ 6= 0.)

This completes the proof of the theorem.
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Now I’ll describe the Gaussian elimination algorithm. Let S be the following system.

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

am1x1 + am2x2 + · · ·+ amnxn = bm

Perform the following operations for each i from 1 to m in that order, or until I tell you
to stop.

• Find the row, below row i, with the leftmost leading term among those rows. If
there is no such thing (ie, if ajk = 0 for all j ≥ i and 1 ≤ k ≤ m), stop. Otherwise,
swap this row with row i.
• Say the leading coefficient in row i is in column j. For each k > i, perform the

row combination ρk → ρk − (akj/aij)ρi.
• Repeat.

After the first i steps of this algorithm, we’ve ensured that the leading terms of the first
i rows go from left to right (this is easily proven by induction on i). If we go through
every row, then we’ve ensured that the leading terms are ordered this way throughout
the whole matrix. If we stop at row i, then none of the rows below have leading terms.
Either way, after finishing, the system is in echelon form.

So what do we do with this? First, let’s consider the equations without leading terms.
They look something like this;

0x1 + 0x2 + · · ·+ 0xn = b

This equation is either true or false outright, depending on whether b = 0 or b 6= 0. If
b 6= 0 then we call the equation inconsistent. If, after performing Gaussian elimination to
bring a system into echelon form, we find an inconsistent equation at the bottom, then
we’ve determined that it has no solutions, since no system with an inconsistent equation
can have a solution. But what if there are no inconsistent equations at the bottom? Do
we have solutions in this case?

Back-substitution is the algorithm which shows that indeed, the answer is yes. To
perform back-substitution we perform the following operations for each i, starting with
the largest i such that row i has a leading variable, and going down to 1.

• Solve equation i for the leading variable, in terms of all the other variables in
equation i.
• In your formula for the leading variable, for each j > i, replace the leading variable

of row j with formula you found for it previously.



After this process ends, you’ve found a formula for each leading variable in the system,
in terms of only the free variables. Any choice of values for the free variables then results
in a solution to the given system of linear equations.


