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Abstract

An old problem raised independently by Jacobson and Schönheim asks to determine the

maximum s for which every graph with m edges contains a pair of edge-disjoint isomorphic

subgraphs with s edges. In this paper we determine this maximum up to a constant factor.

We show that every m-edge graph contains a pair of edge-disjoint isomorphic subgraphs with

at least c(m logm)2/3 edges for some absolute constant c, and find graphs where this estimate

is off only by a multiplicative constant. Our results improve bounds of Erdős, Pach, and Pyber

from 1987.

1 Introduction

The decomposition of a given graph into smaller subgraphs is an old problem in graph theory that

has been studied from numerous perspectives. A celebrated result of Wilson [16] asserts that given

any fixed graph H, the edge set of any sufficiently large complete graph Kn can be partitioned into

edge-disjoint copies of H, as long as the obvious necessary divisibility conditions e(H) |
(
n
2

)
and

g | n− 1 (where g is the greatest common divisor of the degrees of H) are satisfied.

A factor of a graph is a spanning subgraph, and a factorization is a partition of its edges

into factors. A series of papers by Graham, Harary, Robinson, Wallis, and Wormald (see, e.g.,

[7, 9, 10, 11, 15]) introduced the systematic study of isomorphic factorizations, in which the resulting

factors are required to be isomorphic to each other as graphs. In this literature, a graph G is said

to be divisible by an integer t, or t-divisible, if G admits an isomorphic factorization into t parts,

although the analogy with the number-theoretic notion of divisibility is only syntactical. The notion

of 2-divisibility has also been termed bisectable, with some authors tagging on the extra condition

that the resulting factors were also connected graphs.

The earliest work concerned the divisibility of the complete graph. Extending a partial result of

Guidotti [8], Harary, Robinson, and Wormald [10] proved that the complete graph Kn is divisible by

any integer t which satisfies the obvious necessary condition t |
(
n
2

)
. Most other existing research

on divisibility concentrates on trees and forests, perhaps because their simple structure appears

more tractable. Algorithmically, Graham and Robinson proved in [7] that it is NP-hard to decide
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whether a tree is 2-divisible, while Harary and Robinson [9] discovered a polynomial-time algorithm

to decide whether a tree admits a isomorphic factorization into two connected graphs. The best

general result on trees is due to Alon, Caro, and Krasikov [1], who showed that every m-edge tree

can be made 2-divisible by deleting only O(m/ log logm) edges.

Once one considers general graphs, however, it becomes essentially impossible to hope for 2-

divisibility or even closeness to 2-divisibility. It is therefore natural to ask what is the largest

2-divisible subgraph which must exist in a given graph. This problem (stated below in generality

for hypergraphs) was originally raised independently by Jacobson and Schönheim.

Problem 1.1. Let the self-similarity of an r-uniform hypergraph G, denoted ι(G), be the largest

integer s for which G contains a pair of edge-disjoint isomorphic sub-hypergraphs with s edges each.

For each positive integer m, let ιr(m) be the minimum of ι(G) over all r-uniform hypergraphs with

m edges. Determine ιr(m).

Remark. This paper focuses on graphs (r = 2), so we will write ι(m) instead of ι2(m) throughout.

The first main result in this area was due to Erdős, Pach, and Pyber [4]. Specifically, they

proved that there were absolute constants cr and Cr for which

crm
2/(2r−1) ≤ ιr(m) ≤ Crm2/(r+1) · logm

log logm
.

Their upper bound construction is based on an appropriately chosen random r-uniform hypergraph.

For graphs (r = 2), the powers of m coincide at m2/3, so their lower bound deviated only by a

logarithmic factor from their upper bound construction, which was essentially the Erdős-Rényi

random graph. At around the same time, similar results were obtained independently by Alon

and Krasikov (unpublished), and by Gould and Rödl. The latter group determined in [6] that for

3-uniform hypergraphs, ι3(m) ≥ 1
23

√
m, which matched the upper bound exponent, but again fell

short by a logarithmic factor. Very recently, Horn, Koubek, and Rödl [13] announced lower bounds

for ι4(m), ι5(m), and ι6(m) which also came within poly-logarithmic factors of the corresponding

upper bounds derived from random hypergraphs.

The main result of our paper completely solves the graph case, determining the asymptotic rate

of growth of ι(m) = ι2(m).

Theorem 1.2. There are absolute constants c and C for which

c(m logm)2/3 < ι(m) < C(m logm)2/3 .

The key idea is to exploit rare large deviations events through a constructive algorithm, rather

than to attempt to erase them with union bounds. Incidentally, our upper bound construction is

still based on a random graph, but with a slightly modified edge probability.

Inspired by the asymptotic optimality of random graphs in the problem of Jacobson and

Schönheim, our next result explicitly studies the self-similarity of random graphs. The Erdős-Rényi

random graph Gn,p is constructed on the vertex set [n] = {1, . . . , n} by taking each potential edge

independently with probability p. We say that Gn,p possesses a graph property P asymptotically
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almost surely, or a.a.s. for brevity, if the probability that Gn,p possesses P tends to 1 as n grows

to infinity. Since its first appearance in the 1960’s, this beautiful object has been a central topic of

study in graph theory. Surprisingly, many problems about random graphs arose from research in

various other areas of mathematics and theoretical computer science. Yet despite the great amount

of work devoted to this topic over the past fifty years, many interesting unresolved questions still

remain to be answered. For more on random graphs, we refer the reader to the books [3, 14].

When p < 0.99
n , it is well known that a.a.s. all connected components of Gn,p are either trees

or unicyclic (are trees with a single additional edge). Applying the previously mentioned result

of Alon, Caro, and Krasikov, or even Proposition 2.3 below, it is then easy to see that the self-

similarity of Gn,p in that regime is Θ(m) a.a.s., where m is the number of edges. Our second result

asymptotically determines ι(Gn,p) for the remaining range of p.

Theorem 1.3.

(i) If 1
2n ≤ p(n) ≤ 1

e6

√
logn
n , then ι(Gn,p) = Θ

(
n · logn

log γ(n)

)
a.a.s., where γ(n) = 1

p

√
logn
n .

(ii) If p(n) > 1
e6

√
logn
n , then ι(Gn,p) = Θ(n2p2) a.a.s.

We will prove this theorem in the next section. Its proof illustrates the main ideas of the

argument for Theorem 1.2, which follows in Section 3.

Notation. Let G be a graph with vertex set V . For a subset of vertices X ⊂ V , let G[X] be the

subgraph of G induced by X. For a vertex v ∈ V , we use N(v) to denote the set of neighbors of

v. Given a bijection f : V → V ′, let f(G) be the graph with vertex set V ′, where x′, y′ ∈ V ′ are

adjacent if and only if there exist two adjacent vertices x, y ∈ V such that f(x) = x′ and f(y) = y′.

For two graphs G1 and G2 defined on the same vertex set, let G1 ∪ G2 be the graph obtained by

taking the union of the edge sets of the two graphs, and let G1 ∩ G2 be the graph obtained by

taking the intersection of the edge sets of the two graphs.

The following standard asymptotic notation will be utilized extensively. For two functions f(n)

and g(n), we write f(n) = o(g(n)) if limn→∞ f(n)/g(n) = 0, and f(n) = O(g(n)) or g(n) = Ω(f(n))

if there exists a constant M such that |f(n)| ≤ M |g(n)| for all sufficiently large n. We also write

f(n) = Θ(g(n)) if both f(n) = O(g(n)) and f(n) = Ω(g(n)) are satisfied. All logarithms will be in

base e ≈ 2.718.

2 Random graphs

We will use the following well-known concentration result, which is a consequence of Theorems

A.1.11 and A.1.13 in the book [2]. Let Bin(n, p) denote the binomial random variable with param-

eters n and p.

Theorem 2.1. If X ∼ Bin(n, p) and λ ≤ np, then

P [|X − np| ≥ λ] ≤ e−
λ2

15np .
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We begin by analyzing the self-similarity of random graphs. In addition to being an interesting

question in its own right, this investigation also suggests good intuition for general graphs. The

upper bounds on ι(Gn,p) follow from relatively straightforward union bounds.

Proof of upper bound in Theorem 1.3. Suppose that we are seeking a pair of edge-disjoint isomor-

phic subgraphs with t edges. This task is equivalent to finding subgraphs H ′ with 2t edges that

can be partitioned into the union H ∪ π(H), for some t-edge subgraph H and a permutation π of

the vertex set. The expected number of such subgraphs H ′ in Gn,p is at most((n
2

)
t

)
· n! · p2t <

(
en2p2

t

)t
en logn , (1)

where the first binomial coefficient counts the number of ways to select t edges for H out of all(
n
2

)
available, and the n! bounds the number of permutations π of the vertex set. Together, these

choices determine the 2t edges which make up H ′, which appear with probability p2t. Thus, if we

select a value of t for which the right hand side of (1) becomes o(1), we will establish that the

number of such H ′ is zero a.a.s., and hence ι(Gn,p) < t a.a.s.

We separately specify suitable choices for t for the two regimes of p that we consider in this

theorem. For part (i), where 1
2n ≤ p ≤ 1

e6

√
logn
n , we use t = n logn

log γ , where γ = 1
p

√
logn
n . Note that

in this range we have e6 ≤ γ ≤ 2
√
n log n. Then the right hand side of (1) becomes

(
en2 · logn

γ2n

n logn
log γ

)n logn
log γ

en logn =

(
e log γ

γ2

)n logn
log γ

en logn = e
−n logn

log γ
·log

(
γ2

e log γ

)
· en logn.

Since γ ≥ e6, we have log
(

γ2

e log γ

)
> 3

2 log γ, and hence the right hand side of (1) is at most

e−
3
2
n logn · en logn = o(1).

For part (ii), where p ≥ 1
e6

√
logn
n , we specify t = e12n2p2. The right hand side of (1) then

becomes (
1

e11

)e12n2p2

en logn ≤
(

1

e11

)n logn

en logn = o(1) .

The remainder of this section is devoted to constructing large self-similar subgraphs in Gn,p.

The structure given in the following definition turns out to be extremely useful (both for this section

and the next section).

Definition 2.2. Let d and k be positive integers.

(i) A d-star is a graph consisting of d + 1 vertices and d edges, where one of the vertices has

degree d. We sometimes simply refer to these graphs as stars.

(ii) A (d, k)-star-forest is a collection of k vertex-disjoint d-stars. We denote a (d, k)-star-forest

by the set of pairs {(v,Nv) : v ∈ B}, where B is a set of k vertices, and for each v, the set

Nv ⊂ N(v) is a disjoint set of d neighbors of v.
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The following two propositions were the key ideas in [4]. We include their proofs for complete-

ness, as well as to illuminate the points at which we introduce our new arguments. The first claim

asserts that the self-similarity of a graph is large if there are many non-isolated vertices.

Proposition 2.3. Let G be a graph on n vertices with no isolated vertices. Then ι(G) ≥ n−2
4 .

Proof. We first prove that G contains vertex-disjoint stars that cover all the vertices of the graph.

Given a graph G, iteratively remove edges that connect two vertices of degree at least two (in an

arbitrary order). Clearly, this process never creates isolated vertices, and the final graph consists

only of stars because all remaining vertices of degree two or more are non-adjacent.

It remains to show that any n-vertex star forest contains two large edge-disjoint isomorphic

subgraphs G1 and G2. We consider the stars in the forest by their type. Note that 1-stars are

nothing more than single edges, so for every two 1-stars, we can put one of them in G1 and the

other in G2. We account for this as a contribution of +1 toward ι(G) from the four vertices in the

two 1-stars. On the other hand, for d ≥ 2, we can split the edges of every d-star into two sets of size⌊
d
2

⌋
, possibly with one edge left over. By adding one part to G1 and the other to G2, we see that

the d+ 1 vertices of each d-star contribute +
⌊
d
2

⌋
to ι(G). Accumulating the contributions from all

vertices, except possibly for at most two vertices from a single unpaired 1-star, we find that

ι(G) ≥ (n− 2) ·min

{
1

4
, min
d≥2

{
bd/2c
d+ 1

}}
=
n− 2

4
.

Although our problem considers the self-similarity within a single graph, our lower bound argu-

ment first separates the given graph into two disjoint subgraphs, and constructs a suitable mapping

between them which overlaps many edges.

Definition 2.4. Let G1 and G2 be two edge-disjoint graphs, on possibly overlapping vertex sets V1

and V2 of the same cardinality. Let their similarity ι(G1, G2) be the maximum integer s such that

there exists a bijection f : V1 → V2 for which f(G1) ∩G2 contains s edges.

The next proposition uses a random mapping as the input in Definition 2.4, in order to measure

similarity of two random bipartite graphs.

Proposition 2.5. For i = 1, 2, let Gi be edge-disjoint bipartite graphs with parts Ai and Bi, where

|A1| = |A2| = n1 and |B1| = |B2| = n2. Suppose that A1 ∪ A2 and B1 ∪ B2 are disjoint, but A1

may intersect A2 and B1 may intersect B2. Then ι(G1, G2) ≥ |E(G1)||E(G2)|
n1n2

.

Proof. Independently sample uniformly random bijections from A1 to A2 and from B1 to B2, and

let f be their combination. For each pair of edges e1 ∈ E(G1) and e2 ∈ E(G2), the probability that

e1 gets mapped to e2 by f is exactly 1
n1n2

. Such a situation contributes +1 to the intersection size

f(G1) ∩G2. Therefore, by linearity of expectation, the expected number of edges in f(G1) ∩G2 is

at least |E(G1)||E(G2)|
n1n2

, and there exists a suitable f which achieves that bound.

Corollary 2.6. Let G be a bipartite graph with parts A and B such that |E(G)| ≥ 10. Then

ι(G) ≥ |E(G)|2
5|A||B| .
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Proof. Arbitrarily partitionG into two edge-disjoint subgraphsG1∪G2 with b1
2 |E(G)|c ≥ |E(G)|−1

2 ≥
9|E(G)|

20 edges, and apply Proposition 2.5.

Corollary 2.7. Let G be a graph with n vertices and m edges, where m ≥ 20. Then ι(G) ≥ m2

5n2 .

Proof. Let A∪B be a bipartition of the vertex set of G chosen uniformly at random. The probability

of a single edge intersecting both parts is exactly 1
2 , and thus by averaging, there exists a bipartition

A∪B for which the bipartite graph H between A and B contains at least m
2 edges. Since |A||B| ≤ n2

4

and m/2 ≥ 10, by Corollary 2.6, we have ι(G) ≥ (m/2)2

5(n2/4)
= m2

5n2 .

To prove Proposition 2.5, we considered a random bijection between the two vertex sets, as

there exists a map such that the resulting number of overlapping edges is at least its expectation.

This strategy turns out to be strong enough when the graph is dense. On the other hand, for sparse

graphs, Proposition 2.3 produces a reasonable bound. These were the key steps used by Erdős,

Pach, and Pyber in [4]. In order to establish Theorem 1.3, however, we need something slightly

more powerful for the intermediate edge density regime.

The key new ingredient is to design a vertex permutation that performs better than a uniformly

random one. To sketch our argument, consider the illustrative case p = n−1/2, which represents

the most delicate range. We first randomly split the vertices into four parts A1, A2, B1, B2 of equal

size, and let Gi be the bipartite graph formed by the edges between Ai and Bi. We discard all other

edges, and bound only the similarity between G1 and G2. Rather than searching for an unstructured

permutation of the whole vertex set, we build a favorable bijection f : A1∪B1 → A2∪B2 which sends

A1 to A2 and B1 to B2 with many overlapping edges. Note that if we let f be a uniformly random

bijection from A1 ∪ B1 to A2 ∪ B2, then we essentially recover Proposition 2.5, thus producing a

lower bound of order only Θ(n), which falls short of Theorem 1.3 by a logarithmic factor.

We start with a uniformly random bijection from B1 to B2, and carefully extend it from A1 to

A2 as follows. Consider a fixed vertex v1 in A1 and a fixed vertex v2 in A2. If we mapped v1 to

v2, we would increase the number of overlapping edges by exactly |f(N(v1))∩N(v2)|, where N(vi)

represents the set of neighbors of vi in Bi. (Recall that we discarded all other edges, so the vi only

have neighbors in their corresponding Bi.) Since we have p = n−1/2, if v2 is chosen uniformly at

random, the expected size of the set f(N(v1))∩N(v2) is some constant λ, and this observation led

to the Θ(n) lower bound when considering a uniformly random bijection.

The crucial observation is that for each individual pair of vi, the overlap |f(N(v1)) ∩ N(v2)|
asymptotically has the Poisson distribution with mean λ. Therefore, with probability at least n−ε,

it will be of size at least ε′ logn
log logn for some small constants ε and ε′. Since A2 has n

4 vertices,

the expected number of vertices v2 ∈ A2 that will give this high gain together with v1 is Ω(n1−ε).

In particular, it is very likely that there exists a suitable vertex v2 for v1 such that |f(N(v1)) ∩
N(v2)| ≥ ε′ logn

log logn , and we will map v1 to v2 in such a situation. By repeating this for a constant

proportion of vertices in A1, we will obtain ι(Gn,p) ≥ Ω(n · logn
log logn). Since γ =

√
log n, this gives

ι(Gn,p) ≥ Ω(n · logn
log γ(n)) for our choice of p. Our next two lemmas formalize this intuition.
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Lemma 2.8. Let n and p satisfy n−
21
40 ≤ p ≤ 1

e6

√
logn
n , and define γ = 1

p

√
logn
n . Let N1, . . . , Ns ⊂

B be s ≥ n1/3 disjoint sets of size np
16 , and consider the random set Bp, where we take each element

of B independently with probability p. Then with probability at least 1−e−Ω(n1/12), there is an index

i such that |Bp ∩Ni| ≥ logn
20 log γ .

Proof. Let t =
⌈

logn
20 log γ

⌉
. In our range of p, we always have 2 ≤ t ≤

⌈ logn
120

⌉
, so in particular

t ≤ logn
10 log γ . For a fixed index i, the probability that |Bp∩Ni| ≥ logn

20 log γ is at least
(|Ni|
t

)
pt(1−p)|Ni|−t.

Using the bounds
(
n
k

)
≥
(
n
k

)k
and (1− p) ≥ e−

16
15
p for small p, we have(

|Ni|
t

)
pt(1− p)|Ni|−t ≥

(
np2

16t

)t
e−np

2/15 =

(
log n

16γ2t

)t
e−np

2/15

≥
(

10 log γ

16γ2

)logn/(10 log γ)

· n−1/(15e12)

= e
− logn

10 log γ
·log

(
16γ2

10 log γ

)
· n−1/(15e12) ,

which by log
(

16γ2

10 log γ

)
≤ 2 log γ (deduced from γ ≥ e6), is at least

e−
logn
5 · n−1/(15e12) ≥ n−1/4 .

Hence the expected number of indices i such that |Bp ∩Ni| ≥ logn
20 log γ is at least s · n−1/4 ≥ n1/12.

Since the sets Ni are disjoint, the above events for different choices of i are mutually independent.

Therefore, by Chernoff’s inequality, with probability at least 1− e−Ω(n1/12), we can find an index i

(indeed, several) for which |Bp ∩Ni| ≥ logn
20 log γ .

The previous estimate enables us to bound the similarity between random bipartite graphs.

Lemma 2.9. Let n and p satisfy n−
21
40 ≤ p ≤ 1

e6

√
logn
n , and let γ = 1

p

√
logn
n . Let A1, B1, A2, B2 be

disjoint sets of size n
4 each, and for each i = 1, 2, let Gi be a random bipartite graph with parts Ai

and Bi, where each edge appears independently with probability p. Then ι(G1, G2) ≥ n logn
160 log γ a.a.s.

Proof. Start with a uniformly random bijection f from B1 to B2, and also expose all edges in the

random bipartite graph G2. Since p ≥ n−
21
40 , Chernoff’s inequality and a union bound establish

that a.a.s., all degrees in G2 are between np
8 and np. Condition on this event. We expose the

edges in the bipartite graph G1 by iterating over the vertices in A1, exposing each vertex’s incident

edges in turn. Consider the following greedy algorithm for finding a bijection between A1 and A2.

Let A′1 be the set of vertices in A1 whose edges have been exposed, and suppose that we have an

injective map f : A′1 → A2 such that for all x ∈ A′1, f(N(x)) and N(f(x)) intersect in at least
logn

20 log γ vertices. Let A′2 = f(A′1), and let A′′i = Ai \A′i for i = 1, 2. Suppose that |A′′1| = |A′′2| ≥
|A1|

2

at some point of the process.

We first prove that the graph A′′2 ∪ B2 contains a (np16 , n
1/3)-star-forest. Indeed, let k be the

largest integer such that there exists a (np16 , k)-star-forest {(x,Nx) : x ∈ X} for some set X ⊂ A′′2 of
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size |X| = k, and suppose that k < n1/3. Let N(X) be the union of all neighborhoods of vertices

in X. We know that for every vertex w ∈ A′′2 \X, we have |N(w) ∩N(X)| ≥
(

1
8 −

1
16

)
np ≥ np

16 as

otherwise we find a (np16 , k + 1)-star-forest, contradicting maximality. Therefore, there are at least
np
16 · (|A

′′
2| − |X|) ≥

n2p
128 edges between the sets A′′2 \X and N(X), and in particular, the set N(X)

has at least n2p
128 incident edges in G2. Note that |N(X)| ≤ knp ≤ n4/3p, since we conditioned on

all degrees in G2 being at most np, and by the same reason, the number of edges incident to N(X)

must be at most n7/3p2 < n2p
128 , contradiction. Therefore, we have k ≥ n1/3, as claimed.

Now take any vertex v1 ∈ A′′1, and expose its edges to B1. Its neighborhood N(v1) is a

random subset of B1, where each vertex of B1 appears independently with probability p. Since the

bijection f : B1 → B2 was fixed from the outset, the image of the neighborhood f(N(v1)) is also a

random subset of B2 with the same product distribution. By Lemma 2.8, with probability at least

1 − e−Ω(n1/12), we can find a vertex v2 ∈ X ⊂ A′′2 such that |f(N(v1)) ∩ Nv2 | ≥
logn

20 log γ , where X

and Nv2 were from the star forest constructed above. Define f(v1) = v2 and repeat the procedure.

Since the probability of success at each round is 1− o(n−1), we can successfully iterate |A1|
2 times

a.a.s., and then finish by extending f by an arbitrary bijection between the non-mapped vertices

of A1 and A2. In this way, we obtain a bijection f such that the number of edges in f(G1) ∩G2 is

at least |A1|
2 ·

logn
20 log γ = n logn

160 log γ , as desired.

We are now ready to prove the lower bounds of Theorem 1.3.

Proof of lower bound in Theorem 1.3. Part (i) has two subcases. First, for 1
2n ≤ p ≤ n

−21/40, note

that γ = 1
p

√
logn
n ≥ n1/40

√
log n, so the desired lower bound is of order n · logn

log γ = Θ(n). In this

range, the number of non-isolated vertices is Θ(n) a.a.s., so Proposition 2.3 completes this case.

For the next range n−
21
40 ≤ p ≤ 1

e6

√
logn
n , we apply Lemma 2.9 after splitting the vertex set into

four parts. Part (ii) follows directly from Corollary 2.6.

3 Self-similarity of general graphs

Although general graphs are not intrinsically random, we apply probabilistic techniques to find large

edge-disjoint isomorphic subgraphs. The outline of our proof for general graphs is similar to that

for random graphs (see the discussion following Corollary 2.7 in the previous section). The key idea

is to exploit tail events in the Poisson distribution. However, establishing this was somewhat easier

for random graphs since we had independence, and could expose edges in a controlled manner. For

general graphs, there are no random edges to expose. Instead, we turn to star forests, which were

also an important component in the proof of Lemma 2.9.

Let G be a given graph on n vertices with average degree d. As before, we begin by randomly

splitting the vertices into four parts A1, A2, B1, B2, and consider the bipartite graphs Gi formed

by the edges between Ai and Bi. We attempt to find a total of Ω(n1−α) many (d8 , n
α)-star-forests

Si,j = {(v,Nv) : v ∈ Xi,j} for i = 1, 2, 1 ≤ j ≤ Ω(n1−α), where the sets Xi,j ⊂ Ai are disjoint

for different indices. Note that
⋃
Xi,j then cover a constant fraction of each Ai, and hence the

edges in these star forests constitute a constant fraction of the edges in the entire graph G. If we
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fail to find such star forests, then we will be able to pass to a subgraph where we can find even

larger isomorphic subgraphs. On the other hand, once we find such star forests, we take a random

bijection fB from B1 to B2, and extend it by independent bijections from X1,j to X2,j . To this

end, we declare fB to be good for the index j if it can be extended to a bijection between the sets

B1 ∪X1,j and B2 ∪X2,j so that the two star-forests overlap in Ω

(
|X1,j | · logn

log
(
n logn

d2

)
)

edges under

the map. If some bijection fB happens to be good for a constant proportion of indices j, then we

can extend the bijection fB to the sets X1,j for these indices, and thereby construct a map f that

overlaps many edges of G1 and G2.

To begin this program, our first lemma establishes the tail probability of the main random

variable in our setting. It is the analogue of Lemma 2.8.

Lemma 3.1. Let α < 1
2 be a fixed positive real number, and let d and n satisfy n

1
2
− α

16 ≤ d ≤√
αn log n. Let N1, . . . , Ns ⊂ [n] be fixed disjoint sets of size d

2 for some s ≥ 1
5n

α, and let N be a

uniformly random subset of [n] with exactly d elements. Then with probability at least 1−e−Ω(nα/4),

there exists an index i such that |N ∩Ni| ≥ α logn

8 log
(
n logn

d2

) .

Proof. Let N ′ be a random subset of [n] obtained by independently taking each element with

probability d
2n . The distribution of N ′ conditioned on the event |N ′| ≤ d can be coupled with

the random variable N , so that N ′ ⊂ N (given N ′, let N be a set of size d containing N ′ chosen

uniformly at random). By Chernoff’s bound, the probability of |N ′| > d is at most e−Ω(d) <

e−Ω(nα/4), since d ≥ n
1
2
− α

16 and α < 1
2 . Therefore, in order to prove our lemma, it suffices to show

that with probability at least 1−e−Ω(nα/4), there exists an index i such that |N ′∩Ni| ≥ α logn

8 log
(
n logn

d2

) .

Define

γ =
n log n

d2
and t =

⌈
α log n

8 log γ

⌉
.

Since n
1
2
− α

16 ≤ d ≤
√
αn log n, we have

2 <
1

α
≤ γ ≤ n

α
8 log n,

from which it follows that

t ≥ α log n

8 log γ
≥ α log n

8 log(n
α
8 log n)

=
α log n

α log n+ 8 log log n
≥ 1

2
, (2)

for sufficiently large n. Therefore, the rounding effect in the definition of t at most doubles the

value, and we have 1 ≤ t ≤ α logn
4 log γ .

For each index i, let Ei be the event that |N ′ ∩Ni| ≥ t. As |N ′ ∩Ni| is binomially distributed,

just as in the proof of Lemma 2.8, we may use the bounds
(
n
k

)
≥
(
n
k

)k
and 1− p > e−2p (for small

p) to find

P [Ei] ≥
(
|Ni|
t

)(
d

2n

)t(
1− d

2n

)|Ni|−t
≥
(
d/2

t

)t( d

2n

)t (
e−

d
n

) d
2

=

(
d2

4nt

)t
e−

d2

2n .
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Substitute t ≤ α logn
4 log γ to get

P [Ei] ≥
(
d2

4n
· 4 log γ

α log n

)t
e−

d2

2n =

(
log γ

αγ

)t
e
− logn

2γ .

Since α < 1
2 , log γ > log 2, and t ≤ α logn

4 log γ , this is at least

(
1

γ

)α logn
4 log γ

e
− logn

2γ = n−
α
4 n
− 1

2γ ≥ n−
α
4 n−

α
2 = n−

3α
4 .

The Ei are independent because the Ni are disjoint. Therefore the number of Ei that occur

stochastically dominates a binomial random variable with mean sn−3α/4 ≥ 1
5n

α/4, and we conclude

by the Chernoff bound that at least one Ei (indeed, several) occurs with probability 1− e−Ω(nα/4),

as desired.

In the previous section, in Lemma 2.9, we exploited the fact that the given graph was random

and the edges were independent. This trick is too restrictive to be applied to general graphs.

However, the next lemma says that for star-forests, one can obtain a lemma similar to Lemma 2.9.

Lemma 3.2. Let α < 1
2 be a fixed positive real number, and suppose that n and d satisfy n

1
2
− α

16 ≤
d ≤
√
αn log n, and are sufficiently large. For i = 1, 2, let Gi be a (d, nα)-star-forest {(v,Nv) : v ∈

Xi} in the vertex set Xi ∪ Bi, where |Xi| = nα and |Bi| = n. The bijection fB from B1 to B2

chosen uniformly at random satisfies the following property with probability at least 1 − e−Ω(nα/4):

fB can be extended to X1 ∪B1 so that the graph fB(G1)∩G2 has at least |X1| · α logn

36 log
(
n logn

d2

) edges.

Proof. Consider a uniformly random bijection fB from B1 to B2. As in the proof of Lemma 2.9,

we will pick vertices of X1 one at a time, mapping each one to some vertex in X2 in such a way

that their neighbors intersect in at least α logn

9 log
(
n logn

d2

) vertices under the map fB. By repeating this

for |X1|/4 steps, we then extend fB to form a total of at least |X1|
4 ·

α logn

9 log
(
n logn

d2

) overlapping edges,

as required.

To this end, suppose that we have already embedded some set X ′1 ⊂ X1 of size less than |X1|/4,

and let X ′2 be the image of X ′1. Further suppose that we have only exposed the outcome of fB on

the neighbors of X ′1. Let B′1 =
⋃
x∈X′1

Nx and B′2 be its image (which is already fully determined

by our partial exposure). The unexposed remainder of fB, conditioned on the previous outcome,

is a random uniform bijection from B1 \B′1 to B2 \B′2. Choose an arbitrary vertex x1 ∈ X1 \X ′1.

Call a vertex x2 ∈ X2 \X ′2 available if |Nx2 \B′2| ≥ d
2 , or equivalently, |Nx2 ∩B′2| ≤ d

2 . Since each

unavailable vertex accounts for at least d
2 vertices of |B′2|, and those sets are disjoint for different

unavailable vertices (because G2 is a star forest), we conclude that the number of unavailable

vertices is at most
|B′2|
d/2

=
d|X ′2|
d/2

= 2|X ′2| ≤
|X1|

2
,

and hence the number of available vertices in X2 \X ′2 is at least |X1|/4.
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We now expose the images of the d neighbors of x1. This is a uniformly random d-element

subset of B2 \B′2, where

(1− o(1))n = n− d|X ′1| ≤ |B2 \B′2| ≤ n .

For each available vertex x2, its (deterministically known) neighborhood in B2 \ B′2 has size at

least d/2, and there are at least |X1|/4 = nα/4 such neighborhoods, all disjoint, coming from

different available vertices. We are therefore in the setting of Lemma 3.1 (with (1− o(1))n instead

of n), and so we conclude that with probability 1 − e−Ω(nα/4), there is an available vertex x2

such that |fB(Nx1) ∩ Nx2 | ≥
α logn

9 log
(
n logn

d2

) . Furthermore, we only need to expose the outcome

of fB on Nx1 . We can continue the process for at least |X1|
4 times, with probability at least

1− |X1|
4 · e

−Ω(nα/4) = 1− e−Ω(nα/4). This proves the lemma.

Our next proposition bounds the self-similarity of a graph in terms of its median degree. To

prove the proposition, we will find many star-forests in our graph, and apply Lemma 3.2 several

times.

Proposition 3.3. Let α ≤ 1
25 be a fixed positive real number. Then for every sufficiently large n

and d satisfying 6n
1
2
− α

16 ≤ d ≤
√
αn log n, every n-vertex graph G with at least n

2 vertices of degree

at least d has ι(G) > αn logn

2592 log
(
n logn

d2

) .

Proof. Take a uniformly random partition A1∪A2∪B1∪B2 of the vertex set, where |A1| = |A2| =
|B1| = |B2| = n

4 . For i = 1, 2, let Gi be the bipartite graph formed by the edges between Ai and

Bi. Since d > n1/3, by the concentration of the hypergeometric distribution (see, e.g., Theorem

2.10 of [14]) and a union bound, one can see that a.a.s. each Ai contains at least n
9 vertices that

have at least d
5 neighbors in Bi in the graph Gi. Condition on this event.

Let d′ = d
10 and n′ = n

4 , and note that since α ≤ 1
25 , 2nα

3 < (n′)α < nα. Let k1 be the largest

integer for which we can find a collection of (d′, (n′)α)-star-forests S1,j = {(v,Nv) : v ∈ X1,j} in G1,

where the sets X1,j are disjoint subsets of A1, for 1 ≤ j ≤ k1. We claim that k1 ≥ n1−α

18 . Indeed,

if not, then there exist over n
9 − k1(n′)α ≥ n

18 vertices in A1 that are not covered by the sets of

the form X1,j , and have degree at least d
5 in the set B1. Let A′1 be the set of these vertices. By

our maximality assumption, we know that the graph G1[A′1 ∪ B1] does not contain a (d′, (n′)α)-

star-forest. Let S = {(v,Nv) : v ∈ X} be a (d′, h)-star-forest in G1[A′1 ∪ B1], where X ⊂ A′1 and

h is as large as possible. By our assumption, we know that h < (n′)α. Then all the vertices in

A′1 \ X have degree at least d
10 in the set N =

⋃
v∈X Nv. Note that |N | = d′h < d

10 · n
α and

|A′1 \X| ≥ n
18 − h >

n
19 . In this case, Corollary 2.6 applied to G[(A′1 \X) ∪N ] already gives

ι(G) ≥ ι(G[(A′1 \X) ∪N ]) ≥ ((d/10) · |A′1 \X|)
2

5|N | · |A′1 \X|
=
d2|A′1 \X|

500|N |
>
dn1−α

950
>
n4/3

950
,

which for large n is already far more than enough. Therefore, we may assume that k1 ≥ n1−α

18 .

Similarly, there is a collection of n1−α

18 many (d′, (n′)α)-star-forests S2,j = {(v,Nv) : v ∈ X2,j} in

G2, where X2,j are disjoint subsets of A2.
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Let fB be a bijection from B1 to B2 chosen uniformly at random. Our initial conditions on n and

d imply that n′ and d′ satisfy the requirements of Lemma 3.2, so for each fixed j, with probability

at least 1− e−Ω(nα/4), fB can be extended to a bijection between B1 ∪X1,j and B2 ∪X2,j such that

fB(G1[B1 ∪X1,j ]) and G2[B2 ∪X2,j ] overlap in at least

|X1,j | ·
α log n′

36 log
(
n′ log(n′)

(d′)2

) > 2nα

3
·

α log
(
n
4

)
36 log

(
25n logn

d2

) ≥ nα · α log n

144 log
(
n logn
d2

)
edges, where we used n logn

d2
≥ 1

α ≥ 25.

Since the sets X1,j are disjoint for distinct j, and X2,j are also disjoint for distinct j, a union

bound shows that we can independently extend the bijection fB by each X1,j → X2,j to construct

a map f : A→ B which establishes

ι(G1, G2) >
n1−α

18
· nα · α log n

144 log
(
n logn
d2

) =
αn log n

2592 log
(
n logn
d2

) ,
completing the proof.

We are now ready to prove Theorem 1.2, and establish the correct order of magnitude of the

function ι(m).

Proof of Theorem 1.2. Consider the random graph Gn,p with p =
√

logn
n . For m = 1

2n
3/2
√

log n,

we a.a.s. have e(Gn,p) = (1 + o(1))m, and by Theorem 1.3, ι(Gn,p) = Θ(n log n) = Θ((m logm)2/3).

Since the function ι is monotone, this shows that ι(m) ≤ O((m logm)2/3), and establishes the upper

bound. In the remainder of the proof, we focus on proving the lower bound.

Let G be the given graph with n vertices and m edges. Without loss of generality, we may

assume that G contains no isolated vertices. Let n0 = n, m0 = m, G0 = G, and let V0 be

the vertex set of G0. Let n0 = 2a0
m

2/3
0

(logm0)1/3
for some real a0. Let t = 1 in the beginning and

consider the following iterative process. At each step t, we will either find two large isomorphic

edge-disjoint subgraphs, or will find an induced subgraph Gt on the vertex set Vt such that for

nt = |Vt|, mt = |E(Gt)|, and at satisfying nt = 2at
m

2/3
t

(logmt)1/3
, we have the following properties:

(i) Gt has no isolated vertex,

(ii) m0 ≥ mt ≥
(

1−
∑t−1

i=0 2−ai
)
m0 >

m
3 , and

(iii) at ≤ at−1 − 1
3 for t ≥ 1.

Note that the properties indeed hold for t = 0. Suppose that we are given parameters as above

for some t ≥ 0. If nt ≥ (mt logmt)
2/3, then by Proposition 2.3, we have ι(G) ≥ (mt logmt)2/3−2

4 =

Ω((m logm)2/3). On the other hand, if nt ≤ 8m
2/3
t

(logmt)1/3
, then by Corollary 2.7, we have

ι(G) ≥ m2
t

5n2
t

≥ Ω((m logm)2/3) .
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Therefore, we may assume that

8m
2/3
t

(logmt)1/3
< nt < (mt logmt)

2/3 . (3)

from which it follows that 3 < at < log2 logmt. Define

dt =
mt

2at · nt
= 2−2at(mt logmt)

1/3 ,

and let V ′t be the subset of vertices which have degree at least dt in the graph Gt. Using the upper

bound of (3) together with at < log2 logmt, one can see that

dt >
n

3/2
t / logmt

2at · nt
>

n
1/2
t

(logmt)2
> 6n

1
2
− α

16
t

for α = 1
25 . The lower bound of (3) gives mt < (nt8 )3/2(logmt)

1/2, so using at > 3, we find that

dt ≤
(nt/8)3/2

√
logmt

2at · nt
<

1

147

√
nt log nt <

√
αnt log nt .

Consequently, if |V ′t | ≥
|Vt|
2 , then by Proposition 3.3 we have

ι(G) >
αnt log nt

2592 log
(
nt lognt

d2t

) =
nt log nt

64800 log
(
nt lognt

d2t

) .
Since nt

d2t
= 25at

logmt
and logmt > log nt = at log 2 + 2

3 logmt − 1
3 log logmt >

1
2 logmt, we have

ι(G) >
nt log nt

64800 log
(
nt
d2

log nt
) > nt logmt

(648000 log 2)at
=

2at

(648000 log 2)at
·m2/3

t (logmt)
2/3.

Since at > 3, we have 2at
at
> 2, and thus

ι(G) >
1

324000 log 2
·m2/3

t (logmt)
2/3 = Ω((m logm)2/3) .

Otherwise, we have |V ′t | <
|Vt|
2 . Let Vt+1 be the set of non-isolated vertices in the induced subgraph

G[V ′t ]. Let nt+1 = |Vt+1| and let mt+1 be the number of edges in the induced subgraph Gt+1 =

G[Vt+1]. Define at+1 so that nt+1 = 2at+1
m

2/3
t+1

(logmt+1)1/3
. Note that since we only removed vertices

whose degree in Gt was less than dt, our new number of edges is mt+1 > mt−ntdt = (1− 2−at)mt,

and in particular is well above mt/2 because at > 3. Property (i) follows from the definition. For

Property (ii), note that

mt+1 > (1− 2−at)mt ≥ (1− 2−at)

(
1−

t−1∑
i=0

2−ai

)
m0 >

(
1−

t∑
i=0

2−ai

)
m0 ,
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and moreover, since ai > 3 and ai+1 ≤ ai − 1
3 for all i, we have(

1−
t∑
i=0

2−ai

)
m >

(
1−

∞∑
i=0

2−3− i
3

)
m =

(
1− 1

8
· 1

1− 2−1/3

)
m >

m

3
.

Finally, since mt/2 < mt+1 ≤ mt we have

nt+1 <
nt
2

= 2at−1 m
2/3
t

(logmt)1/3
< 2at−1 (2mt+1)2/3

(logmt+1)1/3
= 2at−

1
3

m
2/3
t+1

(logmt+1)1/3
,

from which Property (iii) follows. Note that by Property (iii), at some time s we will reach as ≤ 3,

and will be done by Corollary 2.7, in the middle of the process at time s.

4 Concluding remarks

In this paper, we proved that ι(m) = Θ((m logm)2/3). The upper bound followed by considering

the random graph Gn,p with p =
√

logn
n . For this range of p, we have m = Θ(n3/2(log n)1/2), or

equivalently n = Θ
(

m2/3

(logm)1/3

)
. By carefully studying the proof of Theorem 1.2, one can notice

that every graph G with ι(G) ≤ O((m logm)2/3) has to be somewhat similar to the above random

graph. Indeed, by choosing different parameters in the proof, one can see that for every ε > 0, such

graphs G must contain a subgraph on n′ = Θ
(

m2/3

(logm)1/3

)
vertices with at least (1−ε)m edges, where

the degree of at least (1−ε)n′ vertices is Ω(d), for d being the average degree of the subgraph (thus

d = Θ((m logm)1/3)). Moreover, the edges of this subgraph are well-distributed, in the sense that

there does not exist a pair of disjoint vertex subsets X,Y satisfying e(X,Y )� d
√
|X||Y | (since in

this case we can directly apply Corollary 2.7).

For a positive integer s ≥ 2, let ιs(G) be the maximum t for which G contains an s-divisible

subgraph with t edges, and let ιr,s(m) be the minimum of ιs(G) over all r-uniform hypergraphs

with m edges (thus we have ιr(m) = ιr,2(m)). By slightly adjusting our proof of the bound

ι(m) = Θ((m logm)2/3), we can also prove for fixed constant s that ι2,s(m) = Θ(m
s

2s−1 (logm)
2s−2
2s−1 ).

The upper bound follows by considering the random graph Gn,p with p =
(

logn
n

)1/s
. For the lower

bound, if n ≤ ms/(2s−1)

(logm)1/(2s−1) , then we can use an argument similar to that of Corollary 2.7, and if

n ≥ m
s

2s−1 (logm)
2s−2
2s−1 , then we can use an argument similar to that of Proposition 2.3. In the

remaining range of parameters, we can proceed as in Section 3. The value α logn

8 log(n logn

d2
)

in Lemma

3.1 will be replaced by Ω

(
logn

log
(
ns−1

ds
logn

)).
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