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More than forty years ago, Erdős conjectured that for any t � n
k , every k-uniform hypergraph on

n vertices without t disjoint edges has at most max{
(
kt−1
k

)
,
(
n
k

)
−

(
n−t+1

k

)
} edges. Although this

appears to be a basic instance of the hypergraph Turán problem (with a t-edge matching as the
excluded hypergraph), progress on this question has remained elusive. In this paper, we verify this
conjecture for all t < n

3k2 . This improves upon the best previously known range t = O
(

n
k3

)
, which

dates back to the 1970s.

AMS 2010 Mathematics subject classification: Primary 05D15; 05C65

1. Introduction

A k-uniform hypergraph is a pair H = (V , E), where V = V (H) is a finite set of vertices, and
E = E(H) ⊆

(
V
k

)
is a family of k-element subsets of V called edges. A matching in H is a set of

disjoint edges in E(H). We denote by ν(H) the size of the largest matching, i.e., the maximum
number of disjoint edges in H . The problem of finding the maximum matching in a hypergraph
has many applications in various different areas of mathematics, computer science, and even
computational chemistry. Yet although the graph matching problem is fairly well understood,
and solvable in polynomial time, most of the problems related to hypergraph matching tend to
be very difficult and remain unsolved. Indeed, the hypergraph matching problem is known to be
NP-hard even for 3-uniform hypergraphs, without any good approximation algorithm.

One of the most basic open questions in this area was raised in 1965 by Erdős [5], who asked
for the determination of the maximum possible number of edges that can appear in any k-uniform
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hypergraph with matching number ν(H) < t � n
k

(equivalently, without any t pairwise disjoint
edges). He conjectured that this problem has only two extremal constructions. The first one is a
clique consisting of all the k-subsets on kt − 1 vertices, which obviously has matching number
t − 1. The second example is a k-uniform hypergraph on n vertices containing all the edges
intersecting a fixed set of t − 1 vertices, which also forces the matching number to be at most
t − 1. Neither construction is uniformly better than the other across the entire parameter space,
so the conjectured bound is the maximum of these two possibilities. Note that in the second case,
the complement of this hypergraph is a clique on n − t + 1 vertices together with t − 1 isolated
vertices, and thus the original hypergraph has

(
n
k

)
−

(
n−t+1

k

)
edges.

Conjecture 1.1. Every k-uniform hypergraph H on n vertices with matching number ν(H) <

t � n
k

satisfies

e(H) � max

{(
kt − 1

k

)
,

(
n

k

)
−

(
n − t + 1

k

)}
. (1.1)

In addition to being important in its own right, this Erdős conjecture has several interesting
applications, which we discuss in the concluding remarks. Yet although it is more than forty years
old, only partial results have been discovered so far. In the case t = 2, the condition simplifies
to the requirement that every pair of edges intersects, so Conjecture 1.1 is thus equivalent to a
classical theorem of Erdős, Ko and Rado [7]: that any intersecting family of k-subsets on n � 2k

elements has size at most
(
n−1
k−1

)
. The graph case (k = 2) was separately verified in [6] by Erdős

and Gallai. For general fixed t and k, Erdős [5] proved his conjecture for sufficiently large n.
Frankl [8] showed that Conjecture 1.1 was asymptotically true for all n by proving the weaker
bound e(H) � (t − 1)

(
n−1
k−1

)
.

A short calculation shows that when t � n
k+1

, we always have
(
n
k

)
−

(
n−t+1

k

)
>

(
kt−1
k

)
, so the

potential extremal example in this case has all edges intersecting a fixed set of t − 1 vertices.
One natural question is then to determine the range of t (with respect to n and k � 3) for
which the maximum is indeed equal to

(
n
k

)
−

(
n−t+1

k

)
, i.e., where the second case is optimal.

Recently, Frankl, Rödl and Ruciński [9] studied 3-uniform hypergraphs (k = 3), and proved that
for t � n/4, the maximum was indeed

(
n
3

)
−

(
n−t+1

3

)
, establishing the conjecture in that range.

For general k � 4, Bollobás, Daykin and Erdős [4] explicitly computed the bounds achieved by
the proof in [5], showing that the conjecture holds for t < n

2k3 . Frankl and Furëdi [8] established

the result in a different range t <
(

n
100k

)1/2
, which improves the original bound when k is large

relative to n. In this paper, we extend the range in which the Erdős conjecture holds to all t < n
3k2 .

Theorem 1.2. For any integers n, k, t satisfying t < n
3k2 , every k-uniform hypergraph on n ver-

tices without t disjoint edges contains at most
(
n
k

)
−

(
n−t+1

k

)
edges.

To describe the idea of our proof, we first outline Erdős’ original approach for the
case t < n

2k3 . Let v be a vertex of maximum degree. By induction on t we find t − 1 disjoint
edges F1, . . . , Ft−1, none of which contain v. If deg(v) exceeds k(t − 1)

(
n−2
k−2

)
, which is the

maximum possible number of edges containing v which also meet a vertex in
⋃t−1

i=1 Fi, then
we can find t disjoint edges. Otherwise, the number of edges meeting any of Fi is at most
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|
⋃t−1

i=1 Fi| · k(t − 1)
(
n−2
k−2

)
= k(t − 1) · k(t − 1)

(
n−2
k−2

)
, which turns out to be less than the total

number of edges when n � 2k3t. Any other edge will serve as the tth edge in the matching.
To improve Erdős’ bound, we show that in the first part of the argument, we are already

done if the tth largest degree exceeds 2t
(
n−2
k−2

)
. This puts a tighter constraint on the sum of the

degrees of the k(t − 1) vertices in
⋃t−1

i=1 Fi, allowing the second stage to proceed under the relaxed
assumption n � 3k2t. The fact that t vertices of degree at least 2t

(
n−2
k−2

)
are enough to find t

disjoint edges leads naturally to the following multicoloured version of the Erdős conjecture,
which was also considered independently by Aharoni and Howard in [1].

Conjecture 1.3. Let F1, . . . ,Ft be families of subsets in
(
[n]
k

)
. If

|Fi| > max

{(
n

k

)
−

(
n − t + 1

k

)
,

(
kt − 1

k

)}

for all 1 � i � t, then there is a ‘rainbow’ matching of size t: one that contains exactly one edge
from each family.

The k = 2 case of this conjecture was established by Meshulam (see [1]). To obtain Theorem 1.2,
we prove an asymptotic version of Conjecture 1.3, by showing that a rainbow matching exists
whenever |Fi| > (t − 1)

(
n−1
k−1

)
for every 1 � i � t.

The rest of this paper is organized as follows. In the next section, we describe the so-called
shifting method, which is a well-known technique in extremal set theory, and use it to prove some
preliminary results. In Section 3 we first prove the multicoloured Erdős conjecture asymptotic-
ally, and then use it to prove Theorem 1.2. There, we also use the same argument to show that
Conjecture 1.3 holds for all t < n

3k2 . The last section contains some concluding remarks and open
problems.

2. Shifting

In extremal set theory, one of the most important and widely used tools is the technique of
shifting, which allows us to limit our attention to sets with a certain structure. In this section
we will only state and prove the relevant results for Section 3. For more background on the
applications of shifting in extremal set theory, we refer the reader to the survey [8] by Frankl.

Given a family F of equal-size subsets of [n], for integers 1 � j < i � n, we define the (i, j)-
shift map Sij as follows: for any set F ∈ F ,

Sij(F) =

{
F \ {i} ∪ {j} if and only if i ∈ F, j �∈ F and F \ {i} ∪ {j} �∈ F ,

F otherwise.

Also, we denote the family after shifting as

Sij(F) = {Sij(F) : F ∈ F}.

Lemma 2.1. The shift map Sij satisfies the following properties.

(i) |Sij(F)| = |F |.
(ii) If F is k-uniform, then so is Sij(F).
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(iii) If the families F1, . . . ,Ft have the property that no subsets F1 ∈ F1, . . . , Ft ∈ Ft are pairwise
disjoint, then the shifted families Sij(F1), . . . , Sij(Ft) still preserve this property.

Proof. Claims (i) and (ii) are obvious. For (iii), assume that the statement is false, i.e., we have
Fi ∈ Fi such that Sij(F1), . . . , Sij(Ft) are pairwise disjoint, while F1, . . . , Ft are not. Without loss
of generality, F1 ∩ F2 �= ∅. Next, observe that whenever Sij(Fk) �= Fk, we also have j ∈ Sij(Fk),
so the pairwise disjointness of the Sij(Fk) implies that the only possible case (re-indexing if
necessary) is for Sij(F1) = F1 \ {i} ∪ {j}, and Sij(Fk) = Fk for every k � 2. Note also that since
F1 and F2 intersect while Sij(F1) and Sij(F2) do not, we must have i ∈ F2 and j �∈ F2.

Therefore the only reason that Sij(F2) = F2 is because F ′
2 = F2 \ {i} ∪ {j} is already in F2.

The pair of disjoint sets Sij(F1) and Sij(F2) = F2 have the same union as the pair of disjoint
sets F1 and F ′

2. Using the pairwise disjointness of the Sij(Fk), we conclude that the sets F1, F ′
2,

F3, . . . , Ft are pairwise disjoint as well, contradicting our initial assumption.

In practice, we often combine the shifting technique with induction on the number of elements
in the underlying set. Indeed, let us apply the shifts {Sni}1�i�n−1 successively, and with slight
abuse of notation, let us again call the resulting families F1, . . . ,Ft. Create from each Fi two
sub-families based on containment of the final element n:

Fi(n) = {F \ {n} : F ∈ Fi, n ∈ F},
Fi(n̄) = {F : F ∈ Fi, n �∈ F}.

It turns out that the rainbow matching number does not increase by this decomposition.

Lemma 2.2. Let F1, . . . ,Ft be the shifted families, where each Fi is ki-uniform and
∑t

i=1 ki �
n. Suppose that no subsets F1 ∈ F1, . . . , Ft ∈ Ft are pairwise disjoint. Then, for any 0 � s � t,
the families F1(n), . . . ,Fs(n),Fs+1(n̄), . . . ,Ft(n̄) still have the same property.

Proof. Assume for the sake of contradiction that there exist pairwise disjoint sets F1 ∈ F1(n),

. . . , Fs ∈ Fs(n), Fs+1 ∈ Fs+1(n̄), . . . , Ft ∈ Ft(n̄). By definition of Fi(n) and Fi(n̄), we know that
Fi ∪ {n} ∈ Fi for 1 � i � s, and Fi ∈ Fi for s + 1 � i � t. The size of

⋃t
i=1 Fi is equal to

t∑
i=1

|Fi| =

s∑
i=1

(ki − 1) +

t∑
i=s+1

ki =

t∑
i=1

ki − s � n − s,

so there exist distinct elements x1, . . . , xs �∈
⋃t

i=1 Fi. Since Fi ∪ {n} is invariant under the shift
Snxi , the set Fi ∪ {xi} = (Fi ∪ {n}) \ {n} ∪ {xi} must also be in the family Fi. Taking F ′

i = Fi ∪
{xi} for 1 � i � s, together with Fi for s + 1 � i � t, it is clear that we have found pairwise
disjoint sets from Fi, a contradiction.

3. Main result

In this section, we discuss the Erdős conjecture and its multicoloured generalizations, and prove
the original conjecture for the range t < n

3k2 . The coloured interpretation arises from considering
the collection of families Fi as a single uniform hypergraph (possibly with repeated edges)
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on the vertex set [n], where each set in Fi introduces a hyperedge coloured in the ith colour.
The following lemma is a multicoloured generalization of Theorem 10.3 in [8], and provides a
sufficient condition for a multicoloured hypergraph to contain a rainbow matching of size t.

Lemma 3.1. Let F1, . . . ,Ft be families of subsets of [n] such that for each i, Fi only contains
sets of size ki, |Fi| > (t − 1)

(
n−1
ki−1

)
, and n �

∑t
i=1 ki. Then there exist t pairwise disjoint sets

F1 ∈ F1, . . . , Ft ∈ Ft.

Proof. We proceed by induction on t and n. The case t = 1 is trivial. For general t, we can
also handle all minimal cases of the form n =

∑t
i=1 ki. Indeed, consider a uniformly random

permutation π of [n], and define a series of indicator random variables {Xi} as follows: X1 = 1

if and only if {π(1), . . . , π(k1)} is a set in F1 and X1 = 0 otherwise, and in general, Xj = 1 if and
only if {π(k1 + · · · + kj−1 + 1), . . . , π(k1 + · · · + kj)} is a set in Fj . We assume that there are no
t disjoint sets from different families, so we deterministically have

X1 + · · · + Xt � t − 1. (3.2)

On the other hand, it is easy to see that the expectation of Xi is the probability that a random
ki-set is in Fi, so

EXi =
|Fi|(
n
ki

) .
Yet we know that for every i, we have |Fi| > (t − 1)

(
n−1
ki−1

)
, so

EXi >
(t − 1)

(
n−1
ki−1

)
(
n
ki

) = (t − 1)
ki

n
.

Summing these inequalities over 1 � i � t, we obtain that
∑t

i=1 EXi > t − 1, a contradiction to
(3.2).

Now we consider a generic instance with n >
∑t

i=1 ki, and inductively assume that all in-
stances with smaller n are known. By Lemma 2.1, after applying all shifts {Sni}1�i�n−1, we
obtain families in which any rainbow t-matching can be pulled back to a rainbow t-matching
in {Fi}. For convenience we still call the shifted families {Fi}. Our next step is to partition
each Fi into Fi(n) ∪ Fi(n̄), but in order to avoid empty sets, we first dispose of the case when
there is some ki = 1 with {n} ∈ Fi. After re-indexing, we may assume that this is F1. Since
|Fi| > (t − 1)

(
n−1
ki−1

)
and there are at most

(
n−1
ki−1

)
sets containing n, every other Fi has more than

(t − 2)
(
n−1
ki−1

)
sets which in fact lie in [n − 1]. By induction on the t − 1 sizes k2, . . . , kt, we find

t − 1 such disjoint sets from F2, . . . ,Ft which, together with {n} ∈ F1, establish the claim.
Returning to the general case, since |Fi| = |Fi(n)| + |Fi(n̄)| and our size condition is

|Fi| > (t − 1)

(
n − 1

ki − 1

)
= (t − 1)

(
n − 2

ki − 2

)
+ (t − 1)

(
n − 2

ki − 1

)
,

we conclude that for each i, either |Fi(n)| > (t − 1)
(
n−2
ki−2

)
or |Fi(n̄)| > (t − 1)

(
n−2
ki−1

)
. Without loss

of generality, we may assume that |Fi(n)| > (t − 1)
(
n−2
ki−2

)
for 1 � i � s, and |Fi(n̄)| >

(t − 1)
(
n−2
ki−1

)
for s + 1 � i � t. Note that Fi is (ki − 1)-uniform for 1 � i � s and ki-uniform for
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s + 1 � i � t, and the base set now has n − 1 elements. Induction on n and Lemma 2.2 then
produce t disjoint sets from different families.

As mentioned in the Introduction, the conjectured extremal hypergraph when t � n
k+1

is the
hypergraph consisting of all edges intersecting a fixed set of size t − 1. If we inspect the vertex
degree sequence of this hypergraph, we observe that although there are t − 1 vertices with
high degree

(
n−1
k−1

)
, the remaining vertices only have degree

(
n−1
k−1

)
−

(
n−t
k−1

)
. For small t, this is

asymptotically about (t − 1)
(
n−2
k−2

)
, which is much smaller than

(
n−1
k−1

)
= n−1

k−1

(
n−2
k−2

)
. The following

corollary of Lemma 3.1 shows that this sort of phenomenon generally occurs when hypergraphs
satisfy the conditions in the Erdős conjecture.

Corollary 3.2. If a k-uniform hypergraph H on n vertices has t distinct vertices v1, . . . , vt with
degrees d(vi) > 2(t − 1)

(
n−2
k−2

)
, and kt � n, then H contains t disjoint edges.

Proof. Let Hi be a (k − 1)-uniform hypergraph containing all the subsets of V (H) \ {v1, . . . , vt}
of size k − 1 which together with vi form an edge of H . For any fixed 1 � i � t and j �= i,
there are at most

(
n−2
k−2

)
edges of H containing both vertices vi and vj . Therefore, for every

hypergraph Hi,

e(Hi) � d(vi) − (t − 1)

(
n − 2

k − 2

)
> (t − 1)

(
n − 2

k − 2

)
� (t − 1)

(
n − t − 1

k − 2

)
.

Since every hypergraph Hi is (k − 1)-uniform and has n − t vertices, we can use Lemma 3.1 with
Fi = E(Hi), ki = k − 1 and n replaced by n − t, to find t disjoint edges e1 ∈ E(H1), . . . , et ∈
E(Ht). Taking the edges ei ∪ {vi} ∈ E(H), we obtain t disjoint edges in the original hyper-
graph H .

Now we are ready to prove our main result, Theorem 1.2, which states that for t < n
3k2 , every

k-uniform hypergraph on n vertices without t disjoint edges contains at most
(
n
k

)
−

(
n−t+1

k

)
edges.

Proof of Theorem 1.2. We proceed by induction on t. The base case t = 1 is trivial, so we
consider the general case, assuming that the t − 1 case is known. Suppose e(H) >

(
n
k

)
−

(
n−t+1

k

)
,

and let us seek t disjoint edges in H . We first consider the situation when there is a vertex v of
degree d(v) > k(t − 1)

(
n−2
k−2

)
. Let Hv be the sub-hypergraph induced by the vertex set V (H) \ {v}.

Since there are at most
(
n−1
k−1

)
edges containing v,

e(Hv) � e(H) −
(
n − 1

k − 1

)
>

(
n

k

)
−

(
n − t + 1

k

)
−

(
n − 1

k − 1

)

=

(
n − 1

k

)
−

(
(n − 1) − (t − 1) + 1

k

)
.

By induction, there are t − 1 disjoint edges e1, . . . , et−1 in Hv, spanning (t − 1)k distinct vertices
u1, . . . , u(t−1)k. Note that the number of edges containing v and any vertex uj is at most

(
n−2
k−2

)
.

Therefore, since we assumed that d(v) > k(t − 1)
(
n−2
k−2

)
, there must be another edge et which

contains v but avoids u1, . . . , u(t−1)k. We then have t disjoint edges e1, . . . , et in H .
Now suppose that the maximum vertex degree in H is at most k(t − 1)

(
n−2
k−2

)
. After re-indexing

the vertices, we may assume that k(t − 1)
(
n−2
k−2

)
� d(v1) � · · · � d(vn). If the tth largest degree
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satisfies d(vt) > 2(t − 1)
(
n−2
k−2

)
, then Corollary 3.2 immediately produces t disjoint edges in H ,

so we may also assume for the remainder that d(vt) � 2(t − 1)
(
n−2
k−2

)
.

By induction (with room to spare), we also know that there are t − 1 disjoint edges in H ,
spanning (t − 1)k vertices. Among these vertices, the t − 1 largest degrees are at most k(t −
1)

(
n−2
k−2

)
by our maximum degree assumption, while the remaining (t − 1)(k − 1) vertices cannot

have degrees exceeding d(vt) � 2(t − 1)
(
n−2
k−2

)
. Therefore the sum of degrees of these (t − 1)k

vertices is at most

(t − 1) · k(t − 1)

(
n − 2

k − 2

)
+ (t − 1)(k − 1) · 2(t − 1)

(
n − 2

k − 2

)
= (t − 1)2(3k − 2)

(
n − 2

k − 2

)
.

However, we know that the total number of edges exceeds

e(H) >

(
n

k

)
−

(
n − t + 1

k

)

=

[
1 −

(
1 − t − 1

n

)
· · ·

(
1 − t − 1

n − k + 1

)](
n

k

)

�
[
1 −

(
1 − t − 1

n

)k](
n

k

)

�
[
k · t − 1

n
−

(
k

2

)(
t − 1

n

)2]
n(n − 1)

k(k − 1)

(
n − 2

k − 2

)

�
(

(n − 1)(t − 1)

k − 1
− (t − 1)2

2

)(
n − 2

k − 2

)
,

where we used that (1 − x)k � 1 − kx +
(
k
2

)
x2 when 0 � kx � 1. Since n > 3k2t, we also have

n − 1 > 3k(k − 1)(t − 1). Therefore,

e(H) > (t − 1)2
(

3k − 1

2

)(
n − 2

k − 2

)
,

and so there is another edge in H disjoint from the previous t − 1 edges, again producing t

disjoint edges in H .

Based on the same idea and technique, we can also obtain a multicoloured version of the Erdős
conjecture, which is an analogue of a theorem of Kleitman [10] for matching number greater than
one. Note that Theorem 1.2 is the F1 = · · · = Ft case of the following result.

Theorem 3.3. Let F1, . . . ,Ft be k-uniform families of subsets of [n], where t < n
3k2 , and every

|Fi| >
(
n
k

)
−

(
n−t+1

k

)
. Then there exist pairwise disjoint sets F1 ∈ F1, . . . , Ft ∈ Ft.

Proof. For any vertex v ∈ Fi, let Hj
v be the sub-hypergraph of Fj induced by the vertex set

[n] \ {v}. Then, as in the previous proof,

e(Hj
v ) � |Fi| −

(
n − 1

k − 1

)
>

(
n − 1

k

)
−

(
(n − 1) − (t − 1) + 1

k

)
.

By induction on t, for every i there exist t − 1 disjoint edges {ej}j �=i such that ej ∈ Hj
v . So, as

before, if some Fi has a vertex with degree d(v) > k(t − 1)
(
n−2
k−2

)
, then there is an edge in Fi
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which contains v and is disjoint from {ej}j �=i. Hence we may assume the maximum degree in
each hypergraph Fi is at most k(t − 1)

(
n−2
k−2

)
.

On the other hand, by induction on t we also know that for every i there exist t − 1 disjoint
edges from the families {Fj}j �=i, spanning (t − 1)k vertices. If some Fi has tth largest degree at
most 2(t − 1)

(
n−2
k−2

)
, then the sum of degrees of these (t − 1)k vertices in Fi is again at most

(t − 1)2(3k − 2)

(
n − 2

k − 2

)
�

(
n

k

)
−

(
n − t + 1

k

)
< e(Fi),

which guarantees the existence of an edge in Fi disjoint from the previous t − 1 edges
from {Fj}j �=i. So, we may assume that each Fi contains at least t vertices with degree above
2(t − 1)

(
n−2
k−2

)
.

Now select distinct vertices vi, such that, for each 1 � i � t, the degree of vi in Fi exceeds
2(t − 1)

(
n−2
k−2

)
. Consider all the subsets of [n] \ {v1, . . . , vt} which together with vi form an edge

of Fi. Denote this (k − 1)-uniform hypergraph by T i. The same calculation as in Corollary 3.2
gives

e(T i) > (t − 1)

(
n − t − 1

k − 2

)
.

Applying Lemma 3.1 to {T i}, we again find t disjoint edges from different families, as
desired.

4. Concluding remarks

(1) In this paper, we proved that for t < n
3k2 , every k-uniform hypergraph on n vertices with

matching number less than t has at most
(
n
k

)
−

(
n−t+1

k

)
edges. This verifies the conjecture of

Erdős in this range of t, and improves upon the previously best known range by a factor of k. As
we discussed in the Introduction, if the Erdős conjecture is true in general, then for t < n

k+1
, the

maximum number of edges cannot exceed
(
n
k

)
−

(
n−t+1

k

)
. It would be very interesting to tighten

the range to t < O
(
n
k

)
.

(2) A fractional matching in a k-uniform hypergraph H = (V , E) is a function w : E → [0, 1]

such that for each v ∈ V we have
∑

e�v w(e) � 1. The size of w is the sum
∑

e∈E w(e), and
the size of the largest fractional matching in H is denoted by ν∗(H). The fractional version
of the Erdős conjecture states that among k-uniform hypergraphs H on n vertices with frac-
tional matching number ν∗(H) < xn, the maximum number of edges is asymptotically (1 +

o(1)) max {(kx)k, 1 − (1 − x)k}
(
n
k

)
. It appears that these conjectures are closely related to several

other interesting problems. For example, it was shown in [2] that the integral version can be used
to determine the minimum degree condition which ensures the existence of perfect matchings
in uniform hypergraphs. Furthermore, it turns out that the fractional version is closely related
to an old probability conjecture of Samuels [12], and in computer science, it has applications
to finding optimal data allocations in distributed storage systems (see [2] for more details). In
[3], the fractional Erdős conjecture was used to attack an old problem of Manickam, Miklós and
Singhi, which states that for n � 4k, every set of n real numbers with non-negative sum has at
least

(
n−1
k−1

)
k-element subsets whose sums are also non-negative.
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(3) Pyber [11] proved the following product-type generalization of the Erdős–Ko–Rado theorem.
Let F1 and F2 be families of k1- and k2-element subsets of [n]. If every pair of sets F1 ∈ F1

and F2 ∈ F2 intersects, then |F1||F2| �
(
n−1
k1−1

)(
n−1
k2−1

)
for sufficiently large n. The special case

when k1 = k2 and F1 = F2 corresponds to the Erdős–Ko–Rado theorem. Our Theorem 3.3 is
a minimum-type result of similar flavour. Hence, it would be interesting to study the following
multicolour analogue of Pyber’s result.

Question 4.1. What is the maximum of
∏t

i=1 |Fi| among families F1, . . . ,Ft of subsets of [n],
where each Fi is ki-uniform, and there are no t pairwise disjoint subsets F1 ∈ F1, . . . , Ft ∈ Ft?
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93–95.
[6] Erdős, P. and Gallai, T. (1959) On the maximal paths and circuits of graphs. Acta Math. Acad. Sci.

Hungar. 10 337–357.
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