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Abstract

Erdős and Rothschild asked to estimate the maximum number, denoted by h(n, c), such that

every n-vertex graph with at least cn2 edges, each of which is contained in at least one triangle,

must contain an edge that is in at least h(n, c) triangles. In particular, Erdős asked in 1987

to determine whether for every c > 0 there is ε > 0 such that h(n, c) > nε for all sufficiently

large n. We prove that h(n, c) = nO(1/ log logn) for every fixed c < 1/4. This gives a negative

answer to the question of Erdős, and is best possible in terms of the range for c, as it is known

that every n-vertex graph with more than n2/4 edges contains an edge that is in at least n/6

triangles.

1 Introduction

A book of size h in a graph is a collection of h triangles that share a common edge. The booksize of

a graph G is the size of the largest book in G. The study of books in graphs was started by Erdős

[5] in 1962, and has since attracted a great deal of attention in extremal graph theory (see, e.g.,

[2, 9, 10, 13]) and graph Ramsey theory (see, e.g., [11, 14, 15, 16, 17, 18, 20]).

Erdős and Rothschild [6] initiated the study of the booksize of graphs with the property that

every edge is in a triangle. Let h(n, c) be the largest integer such that every n-vertex graph with

at least cn2 edges, each of which is contained in at least one triangle, must contain an edge that is

in at least h(n, c) triangles. Erdős and Rothschild asked to estimate h(n, c) for fixed c > 0. This

question has received considerable attention (see, e.g., the Erdős problem papers [6, 7, 8], and the

book [3]).

Using his regularity lemma, Szemerédi showed that for every c > 0, h(n, c) → ∞ as n → ∞,

and we will outline this argument at the end of the introduction. This fact has a number of

applications to various problems in extremal combinatorics. Ruzsa and Szemerédi [19] showed that

the statement h(n, c) > 1 for every fixed c > 0 and sufficiently large n implies Roth’s theorem: that

every subset of the first n positive integers without a 3-term arithmetic progression has size o(n).

They also showed that it is equivalent to the (6, 3)-theorem: that every 3-uniform hypergraph on

n vertices in which the union of any 3 edges contains more than 6 vertices has o(n2) edges. In the

other direction, Alon and Trotter (see [8]) proved that for each c < 1/4 there is c′ > 0 such that

h(n, c) < c′
√
n. The condition c < 1/4 is best possible, because independent results of Edwards
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[4] and Khadžiivanov and Nikiforov [13] state that any n-vertex graph with more than n2/4 edges

contains an edge in at least n/6 triangles. In particular, this implies for c > 1/4, we must have

h(n, c) ≥ n/6.

For over two decades, there was no improvement on the O(
√
n) upper bound for any fixed

c < 1/4. Indeed, Erdős even proposed that perhaps the lower bound should be improved to a

power of n. Specifically, in 1987 he asked in [6] whether there is a constant ε > 0 such that

h(n, c) > nε for every fixed c > 0 and all sufficiently large n. This question was also featured in the

book Erdős on Graphs [3]. We give a negative answer to this question. In fact, Theorem 1.1 below

implies that h(n, c) = no(1) for every fixed c < 1/4. By the above remark that h(n, c) ≥ n/6 for

c > 1/4, this gives a best possible range for c with this bound and shows that a sharp transition

occurs when c is near 1/4. All logarithms in this paper are in base e ≈ 2.718.

Theorem 1.1. For all sufficiently large n, there are n-vertex graphs with n2

4

(
1−e−(logn)1/6

)
edges,

with the property that every edge is in a triangle, but no edge is in more than n14/ log logn triangles.

The study of h(n, c) with c near 1/4 began in the problem papers of Erdős [7, 8]. Let f be

such that cn2 = n2/4− f(n)n. Erdős [7] proved if f is constant, then h(n, c) = Ω(n). Bollobás and

Nikiforov [2] further showed that h(n, c) is asymptotically n/6 if f → 0. If f tends to infinity with

n, but not too quickly, so that f(n) < n2/5, they showed that h(n, c) is asymptotically n

2
√

2f(n)
.

Note that Theorem 1.1 shows that this behavior cannot continue when f(n) approaches linearity

in n. In fact, similar constructions, which we omit, show that there are positive absolute constants

α, ε such that h(n, c) = O(n1/2−ε) where f(n) = n1−α. This shows that the asymptotic behavior of

h(n, c) discovered by Bollobás and Nikiforov with c very near 1/4 already breaks down when f(n)

is some power of n which is less than 1.

We close the introduction by discussing lower bounds on h(n, c) for fixed c > 0. The fact

that h(n, c) tends to infinity follows from the triangle removal lemma, which is a consequence of

Szemerédi’s regularity lemma. The triangle removal lemma states that for each ε > 0 there is

δ > 0 such that every graph on n vertices with at most δn3 triangles can be made triangle-free

by removing at most εn2 edges. Let G be a graph on n vertices, c′n2 edges with c′ ≥ c such that

every edge is in at least one triangle and at most h(n, c) triangles. If the total number of triangles

is over δn3, since each triangle contains three edges, the pigeonhole principle already gives an edge

in at least 3 · δn3

c′n2 = 3δn
c′ triangles. On the other hand, if the graph has fewer than δn3 triangles,

the triangle removal lemma gives εn2 edges which capture all of the triangles. Since each edge is

on a triangle, the total number of triangles is at least c′n2

3 . Hence, one of those edges is on at least
c′n2

3 /(εn2) = c′

3ε triangles. Therefore, h(n, c) ≥ min
{
3δn
c′ ,

c′

3ε

}
.

The regularity proof gives a bound for δ−1 in the triangle removal lemma which is a tower of

twos of height a power of ε−1. Using this, one can set δ−1 to be
√
n, say, with ε−1 of order a power

of the iterated logarithm log∗ n, implying that h(n, c) is at least a power of the iterated logarithm

log∗ n. Recently, the first author [12] gave a new proof of the triangle removal lemma which avoids

Szemerédi’s regularity lemma and gives a better bound. Namely, in the triangle removal lemma,

we can take δ−1 to be a tower of twos of height logarithmic in ε−1. This gives a lower bound for

h(n, c) which is exponential in log∗ n.
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2 Tools

The properties of our construction are essentially derived from the concentration of measure. Say

that a random variable X(ω) on an n-dimensional product space Ω =
∏n
i=1 Ωi is C-Lipschitz if

changing ω in any single coordinate affects the value of X(ω) by at most C. The Hoeffding-Azuma

inequality (see, e.g., [1]) provides concentration for these distributions.

Theorem 2.1 (Hoeffding-Azuma Inequality). Let X be a C-Lipschitz random variable on an n-

dimensional product space. Then for any t ≥ 0,

P [|X − E [X] | > t] ≤ 2 exp

{
− t2

2C2n

}
.

We also need the following well-known formula for the volume of a high-dimensional Euclidean

ball. The formula is slightly different for even and odd dimensions. Since our analysis is asymptotic

in nature, it suffices to consider only even dimensions (which yield simpler forms).

Theorem 2.2. For a positive even integer d and a positive real number r, the volume of B
(d)
r , the

d-dimensional Euclidean ball with radius r, is

Vol
(
B(d)
r

)
=
πd/2rd

(d/2)!
.

The following weaker estimate turns out to be more convenient for our analysis.

Corollary 2.3. For a positive even integer d and a positive real number r,

Vol
(
B(d)
r

)
< (2πe)d/2 · r

d

dd/2
.

The desired bound in the corollary follows from the standard estimate d! >
(
d
e

)d
, which is

routinely obtained by bounding log(d!) =
∑d

i=1 log i >
∫ d
1 log x dx.

3 Construction

We first describe a graph which almost has the desired properties. Specifically, no edge will be

in many triangles, and the number of edges will be quadratic in the number of vertices, but some

edges may fail to be in triangles. Throughout this section, we will write x = y ± δ or x is in y ± δ
to denote y − δ ≤ x ≤ y + δ.

Pre-Construction. For a positive even integer r > 2, let d = r5, let n = rd, and let µ = r2−1
6 · d.

Consider the tripartite graph with vertex set A ∪B ∪C, where each of A and B are copies of [r]d,

and C = {0, 1, . . . , r + 1}d. Vertices a ∈ A and b ∈ B are joined by an edge if and only if (when

considered as lattice points in [r]d) their distance satisfies ‖a−b‖22 = µ±d. Similarly, vertices b ∈ B
and c ∈ C are adjacent if and only if ‖b − c‖22 = µ

4 ± 2d. Finally, c ∈ C and a ∈ A are adjacent if

and only if ‖c− a‖22 = µ
4 ± 2d.

The following lemma will help us to show that the bipartite graph between A and B is nearly

complete.
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Lemma 3.1. Let r and d be given integers, and let U and V be two lattice points sampled inde-

pendently and uniformly at random from [r]d. Define

µ =
r2 − 1

6
· d .

Then with probability at least 1− 2e−
d

2r4 , ‖U − V ‖22 = µ± d.

Proof. Let U = (U1, . . . , Ud) and V = (V1, . . . , Vd). The squared L2 distance is precisely
∑

i(Ui −
Vi)

2, which is a sum of d independent random variables. A simple calculation shows that

E
[
(U1 − V1)2

]
= E

[
U2
1

]
− 2E [U1]E [V1] + E

[
V 2
1

]
= 2

(
E
[
U2
1

]
− E [U1]

2
)
.

Since U1 is an integer picked uniformly at random from [r], then E [U1] = r+1
2 while

E
[
U2
1

]
=

1

r
· r(r + 1)(2r + 1)

6
=

(r + 1)(2r + 1)

6
,

so

E
[
(U1 − V1)2

]
=
r2 − 1

6
,

and hence

E
[
‖U − V ‖22

]
=
r2 − 1

6
· d .

On the other hand, each (Ui−Vi)2 is less than r2, so by the Hoeffding-Azuma inequality (Theorem

2.1), the probability that ‖U − V ‖22 deviates from its expectation by more than d is at most

2e−
d2

2r4d = 2e−
d

2r4 ,

as claimed. �

Next, we show that every edge between A and B is in a positive number of triangles, but not

too many.

Lemma 3.2. In the Pre-Construction, the number of edges that join A and B is at least (1 −
2e−

d
2r4 )n2, and every one of those edges is contained in between 2d−1 and 15d triangles.

Proof. The first claim is an immediate consequence of the previous lemma. We then move to

establish a lower bound on the number of triangles that contain a given edge ab. By definition, we

have ‖a − b‖22 = µ ± d. Let m = (m1, . . . ,md) denote the midpoint of a = (a1, . . . , ad) and b =

(b1, . . . , bd) when considered as points in [r]d. Note that although a and b have integer coordinates,

m may have half-integer coordinates. Let xi = bi − ai; then mi − ai = xi
2 . For each i, if xi is odd,

define δi = 1
2 , and if xi is even, define δi = 1. Consider lattice points c of the form ci = mi + δiεi,

where εi ∈ {±1}. All such points still lie in C because C = {0, . . . , r + 1}d. Then,

‖c− a‖22 =
∑
i

(xi
2

+ δiεi

)2
=
‖b− a‖22

4
+
∑
i

δ2i +
∑
i

xiδiεi

‖b− c‖22 =
∑
i

(xi
2
− δiεi

)2
=
‖b− a‖22

4
+
∑
i

δ2i −
∑
i

xiδiεi .
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Since ‖b− a‖22 = µ± d and
∑

i δ
2
i ≤ d, every choice of (εi) satisfying∣∣∣∣∣∑

i

xiδiεi

∣∣∣∣∣ ≤ 3

4
d

will produce a point c ∈ C which is permissible as the third vertex of a triangle containing ab.

(It would make ‖c − a‖22 and ‖b − c‖22 both in µ
4 ± 2d.) Now consider the εi as independent

uniform random variables over {±1}, and define the random variable Z =
∑

i xiδiεi. By symmetry,

E [Z] = 0, and since |xi| ≤ r, changing the choice of a particular εi cannot affect Z by more than

2r. Therefore, the Hoeffding-Azuma inequality (Theorem 2.1) gives

P
[
|Z| > 3

4
d

]
< 2 exp

{
−
(
3
4d
)2

2(2r)2d

}
< 2e−

d
15r2 ,

which implies that the number of valid points c is at least(
1− 2e−

d
15r2

)
· 2d > 2d−1 ,

as claimed.

For the upper bound, again assume that we are given a, b such that ‖a − b‖22 = µ ± d, and let

xi = bi− ai. We will bound the number of half-lattice points c of the form ci = ai + xi
2 + wi

2 , where

wi ∈ Z, which satisfy ‖c− a‖22 = µ
4 ± 2d and ‖b− c‖22 = µ

4 ± 2d. For this, observe that

‖c− a‖22 =
∑
i

(xi
2

+
wi
2

)2
=
‖b− a‖22

4
+

1

4

∑
i

w2
i +

1

2

∑
i

xiwi

‖b− c‖22 =
∑
i

(xi
2
− wi

2

)2
=
‖b− a‖22

4
+

1

4

∑
i

w2
i −

1

2

∑
i

xiwi ,

so we always have

‖c− a‖22 + ‖b− c‖22 =
‖b− a‖22

2
+

1

2

∑
i

w2
i .

Hence whenever both ‖c − a‖22 and ‖b − c‖22 are in µ
4 ± 2d, we also have

∑
iw

2
i ≤ 9d. It therefore

suffices to bound the number of lattice points in B
(d)

3
√
d
, the d-dimensional Euclidean ball of radius

3
√
d centered at the origin. Observe that this is at most the volume of B

(d)

3.5
√
d
, because by placing

a unit d-dimensional cube centered at each lattice point in B3
√
d, we obtain a non-overlapping

collection of unit cubes all contained in the ball of radius 3
√
d + 1

2

√
d by the triangle inequality

(the greatest distance from the center of a unit cube to a point on its boundary is 1
2

√
d).

Yet Corollary 2.3 bounds the volume of the d-dimensional Euclidean ball of radius 3.5
√
d by

(2πe)d/2 ·

(
3.5
√
d
)d

dd/2
< 15d ,

as claimed. �
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Lemma 3.3. In the Pre-Construction, every edge joining B and C, or joining A and C, is con-

tained in at most 15d triangles.

Proof. Assume that we are given a, c such that ‖c − a‖22 = µ
4 ± 2d, and let yi = ci − ai. We will

bound the number of lattice points b of the form bi = ai + 2yi + wi, where wi ∈ Z, which satisfy

‖b− c‖22 = µ
4 ± 2d and ‖b− a‖22 = µ± d. For this, observe that

‖b− c‖22 =
∑
i

(yi + wi)
2 = ‖c− a‖22 +

∑
i

w2
i + 2

∑
i

yiwi

‖b− a‖22 =
∑
i

(2yi + wi)
2 = 4‖c− a‖22 +

∑
i

w2
i + 4

∑
i

yiwi ,

and hence

‖b− a‖22 − 2‖b− c‖22 = 2‖c− a‖22 −
∑
i

w2
i .

Therefore, the only way to have both ‖b − c‖22 = µ
4 ± 2d and ‖b − a‖22 = µ ± d is to also have∑

iw
2
i ≤ 9d. By the same computation as in the proof of the previous lemma, the number of

such integral vectors (wi) is less than 15d. Hence, every edge between A and C is in at most 15d

triangles. By symmetry, every edge between B and C is also in at most 15d triangles. �

We are now ready to prove the main theorem.

Proof of Theorem 1.1. Start with the Pre-Construction for a (sufficiently large) even integer

r, with d = r5 and n = rd = |A| = |B|. Note that n = dd/5, so d = (1 + o(1)) 5 logn
log logn . We will

take a random subgraph by sparsifying C. Let C ′ ⊂ C with |C ′| = 2−d/2|C| be picked uniformly

at random.

Next, consider an edge ab joining A and B. By Lemma 3.2, in the Pre-Construction the edge

ab was in at least 2d−1 triangles with vertices in C. Let Eab be the event that the edge ab is not in

a triangle with a vertex from C ′. This happens precisely when none of the at least 2d−1 vertices in

C that form a triangle with ab are in C ′. Hence,

P [Eab] ≤
(|C| − 2d−1

|C|
2d/2

)/( |C|
|C|
2d/2

)
≤
(

1− 2d−1

|C|

)|C|/2d/2
≤ e−2

d
2−1

,

and the expected number of edges ab for which Eab occurs is at most

|A||B|e−2
d
2−1

= n2e−2
d
2−1

.

Fix a choice of C ′ with at most n2e−2
d
2−1

edges ab satisfying Eab. Consider the subgraph induced

by A ∪B ∪ C ′. The total number of vertices in the graph is only

N = 2n+ |C ′| =

(
2 + 2−d/2

(
r + 2

r

)d)
n <

(
2 + 2−

d
2 · e

2d
r

)
n <

(
2 + 2−

d
3

)
n . (1)

Unfortunately, now some edges are no longer in triangles. We resolve this by deleting all such

edges throughout the graph. By Lemma 3.2 with r = d1/5, the number of edges between A and

B was originally at least n2
(
1− 2e−

1
2
d1/5
)
, so since we chose C ′ such that at most n2e−2

d
2−1

edges

6



between A and B are not in triangles, the number of remaining edges between A and B after

deleting those not in triangles is still at least n2
(
1 − 3e−

1
2
d1/5
)
. Therefore, by (1), the number of

remaining edges between A and B is at least

N2(
2 + 2−

d
3

)2 (1− 3e−
1
2
d1/5
)
>
N2

4

(
1− 4e−

1
2
d1/5
)
>
N2

4

(
1− e−(logN)1/6

)
,

and the number of remaining edges between C ′ and A ∪B is positive, so the remaining graph has

the claimed total number of edges. Finally, note that our deletions cannot create any new triangles,

so by Lemmas 3.2 and 3.3, every edge is still in at most

15d = 15
(1+o(1)) 5 logn

log logn < N14/ log logN

triangles, completing our proof. �

Remark 1. The use of randomness to pick C ′ in the above construction is not necessary. Indeed,

the construction can be made explicit by instead picking C ′ greedily so that each new vertex added

to C ′ (locally) maximizes the number of edges between A and B that are in triangles with vertices

from C ′.

Remark 2. After publicizing this result, the authors received the following nice observation from

Noga Alon. The objective of sparsifying C to C ′ was to raise the edge density to approach 1/4. A

simpler way to increase the density is to leave C alone, and instead replace each vertex of A ∪ B
with exactly 2d copies of itself, joining two copies of (different) vertices by an edge if their original

vertices were initially adjacent, and joining a copy of a vertex in A∪B to an uncopied vertex c ∈ C
if the corresponding original vertex of A ∪B was adjacent to c. This avoids our final probabilistic

arguments altogether, and allows for the further simplification that in the Pre-Construction, all of

A,B,C can be taken to be [r]d. Then, it suffices to replace the lower bound in Lemma 3.2 with

the observation that for any edge ab between A and B, the integer-rounded midpoint produces at

least one point c which completes ab to a triangle.
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[5] P. Erdős, On a theorem of Rademacher-Turán, Illinois J. Math. 6 (1962), 122–127.
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[9] P. Erdős, R. Faudree and E. Györi, On the book size of graphs with large minimum degree,

Studia Sci. Math. Hungar. 30 (1995), 25–46.
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