## Additive Errata

## Additive Combinatorics mini course - errata by Rani Hod

- In section 2.4:
... subsets into intersections of \$ V_i, V_i \setminus S_i, V_j, V_j \setminus T_j\$ over all non-regular ... should be ... subsets into intersections of \$S_i, V_i \setminus S_i, T_j, V_j \setminus T_j\$ over all non-regular ...
- In section 3.1.1, Theorem 3.1.4:
... The best $\$ \backslash e p s i l o n \$$ known $\ldots$ is $4 / 3$, but it is conjectured $\ldots$ for $\$ \backslash e p s i l o n=2-o(1) \$$. should be $\ldots$ The best $\$ \backslash$ epsilon $\$$ known... is $1 / 3$, but it is conjectured... for $\$ \backslash e p s i l o n=1-o(1) \$$.
- In section 3.1.2:
... a condition that $\$ \backslash$ mathbb $\{F\} \$$ contains on subfields. should be $\ldots$ a condition that $\$ \backslash m a t h b b\{F\} \$$ contains no subfields.
- In section 3.1.2, Theorem 3.1.5:
... and it is known that $\$ \backslash$ epsilon $\$$ cannot be larger than $3 / 2$. should be.. and it is known that $\$ \backslash e p s i l o n \$$ cannot be larger than $1 / 2$.
- In section 3.2.1, definition of $\$ \mathrm{I} \$$ :
$\$ \$ \mathrm{I}=\backslash\{\ldots$ such that point p lies on line $\mathrm{I} \backslash\} \$ \$$ should be $\$ \$ \mathrm{I}=\backslash\{\ldots$ such that point $\$ \mathrm{p} \$$ lies on line $\$ 1 \$$ 1\} \$\$
- In section 3.2.2:
... but the same procedure may be plied to the other three ... should be ... but the same procedure may be applied to the other three ...
- In section 3.2.2, just after Theorem 3.2.7:

This is essentially Theorem 3.2.1; maybe it's better to prove the more general case in section 3.2.1. Also, maybe refrain from using $\$ p \$$ to denote both the field characteristic and a member of $\$ \mathbf{P} \$$.

- In section 3.2.3, Definition 3.2.8:
$\$ \backslash$ omegas is not defined. I reckon it is the (complex) $\$|\mathrm{G}| \$-$ th root of unity.
- In section 3.2.5, Definition 3.2.14:
\$\$ || $f(x)$ - U_m |I_1 \le \epsilon\$\$ is an \$(S, \epsilon)\$-disperser. should be \$\$ || f(X) - U_m ||_1 \e \epsilon\$\$ is an \$(S, \epsilon)\$-extractor.
- In section 3.2.5, Iast paragraph before "A Statistical Version of ...": ... Before the sum-product theorem, Erdos (using the ... should be ... Before the sum-product theorem, Erd\"\{o\}s (using the ...
- In section 3.2.5, just before Definition 3.2.18:
$\ldots$ for $\$ \mathrm{k}=\backslash$ delta $\mathrm{n} \$$ and $\$ \mathrm{c}=\backslash$ textrm\{poly\}(1/\delta) $\$$ Note that... should be... for $\$ \mathrm{k}=\backslash$ delta $\mathrm{n} \$ \mathrm{and} \$ \mathrm{c}$ $=\backslash$ textrm\{poly\}(1/\delta) $\$$. Note that...
- In section 3.2.5, Definition 3.2.18:
$\$ \$$ lexists c > $0: \ldots \$ \$$ is $\$ c \$$ dependent on $\$ \times \$$ ? on $\$ \backslash e p s i l o n \$$ ? should $\$ f$ _c $\$$ be a family of functions defined for many values of $\$ c \$$ ?
- In section 3.3, proof of Lemma 3.3.2:
... It is left to prove the claim: assume otherwise, ie that \$\delta' < \frac $1 \mathrm{k} \$$. should be ... It is left to prove the claim: assume otherwise, that is, \$\delta' < \frac $1 \mathrm{k} \$$. ("ie that" appears once more just after Theorem 3.3.6.)
- In section 3.3, proof of Lemma 3.3.2:
 each $\$ \mathrm{~s} \_j \$$ satisfies $\$ s^{\prime} j$ \not $\backslash i n \operatorname{s} \_0 A^{\prime}+s_{-} 1 A^{\prime}+\backslash c d o t s+s \_\{j-1\} A^{\prime} \$$. (The same expression appears two more times throughout the proof.)
- In section 3.3, Theorem 3.3.6:
$\$||A+A|| \wedge\{-1\}<|A| \wedge\{1+$ epsilon $\} \$$ should be (?) $\$|A+A| \wedge\{-1\}<|A| \wedge\{1+\backslash$ epsilon $\} \$$
- In section 3.3, after Theorem 3.3.6:
(i) Lemma 1 and Lemma 2 should be \ref\{\}s to Lemma 3.3.2 and 3.3.3, respectively. (ii) The contrapositive assumptions $\$|A+A| \backslash l e|A| \wedge\{1+\backslash e p s i l o n\} \$$ and $\$|A|$ times $A|\backslash l e| A \mid \wedge\{1+\backslash e p s i l o n\} \$$ should be strict $\$|A+A|<|A| \wedge\{1+\backslash$ epsilon $\} \$$ and $\$|A|$ times $A|<|A| \wedge\{1+\backslash e p s i l o n\} \$$ (iii) The last sentence in the bracketed proof is missing end punctuation.

