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2
Szemeredi’s Regularity Lemma, and Szemeredi’s Theorem for k=3

Luca Trevisan

Scribe(s): Kevin Matulef

In this lecture we give a sketch of Szemeredi’s theorem for k=3. The proof consists of four steps.
The first step, the Regularity Lemma, will be proven in a later lecture. In this lecture we explain
how each subsequent step follows from the the previous one. The steps are:

1. The Regularity Lemma. Roughly, this says that every graph has a constant size approximate
representation (the size of the representation depends only on the quality of the approxima-
tion).

2. The Triangle Removal Lemma. This says that if a graph has o(n3) triangles, then it is possible
to remove o(n2) edges and break all the triangles.

3. Szemeredi’s Theorem for k=3 for groups.

4. Szemeredi’s Theorem for k=3 for the integers.

2.1 How (3) implies (4).

For convenience, we restate the two versions of Szemeredi’s Theorem for k = 3 here:

Theorem 2.1.1 (Szemeredi’s Theorem for k = 3 for Groups). ∀δ, there exists n(δ) st ∀N ≥ n(δ)
and all subsets A ⊆ ZN where |A| ≥ δN , A contains a length-3 arithmetic progression (i.e. three
points a, b, c ∈ ZN such that b− a ≡ c− b mod N).

Theorem 2.1.2 (Szemeredi’s Theorem for k = 3 for the Integers). ∀δ, there exists n(δ) st ∀N ≥
n(δ) and all subsets A ⊆ {1, ..., N} where |A| ≥ δN , A contains a length-3 arithmetic progression
(i.e. three points a, b, c ∈ {1, ..., N} such that b− a = c− b).

To see that Theorem 2.1.1 implies Theorem 2.1.2, fix δ and let A ⊆ {1, ..., N}, |A| ≥ δN . Think
of A as a subset of Z2N , so that |A| ≥ δ

2 |Z2N |. If N is large enough, Theorem 2.1.1 implies that
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there exists a, b, c ∈ A s.t. b− a ≡ c− b (mod 2N). But since a, b, c are all in the range {1, ..., N},
then b − a and c − b are both in the range {1 − N, ..., N − 1}. So the only way that they can be
equal modulo 2N is if in fact b−a = c− b without the mod. This proves Theorem 2.1.2, contingent
on Theorem 2.1.1.

2.2 How (2) implies (3).

We begin with a formal definition of the triangle removal lemma:

Lemma 2.2.1 (Triangle Removal Lemma). For all δ, there exists ε = ε(δ) st. for every graph G
on n vertices, at least one of the following is true:

1. G can be made triangle-free by removing < δn2 edges.

2. G has ≥ εn3 triangles.

In this section we see how Lemma 2.2.1 implies Theorem 2.1.1.
To prove Theorem 2.1.1, start with a group H, and a subset A ⊆ H. Then construct a graph

on n = 3|H| vertices by making three vertex sets, call them X,Y, Z, each with |H| vertices labeled
according to H. Connect these vertices as follows:

• Connect a vertex x ∈ X and y ∈ Y if ∃a ∈ A st y = x+ a.

• Connect a vertex y ∈ Y and z ∈ Z if ∃c ∈ A st z = y + c.

• Connect a vertex x ∈ X and z ∈ Z if ∃b ∈ A st z = x+ b+ b.

Observe that for every choice of x ∈ H and a ∈ A, the graph has triangles of the form
(x, x + a, x + a + a). These triangles are all edge disjoint, so the graph has at least |H| × |A|
edge disjoint triangles. Since |A| ≥ δ|H| and |H| = n/3, this means that to make the graph
triangle free we must remove at least |H| × |A| = δn2/9 edges. Using this observation and Lemma
2.2.1 with ε = ε(δ/9), we conclude that the graph has at least εn3 = 9ε|H|3 triangles.

There is a correspondence between triangles in the graph and length-3 arithmetic progression. If
(x, y, z) is a triangle in the graph, then there exists a, b, c ∈ A st y = x+a, z = y+c, and z = x+b+b.
Putting these equations together and rearranging, we get a− b = b− c. Conversely, if (a, b, c) form
an arithmetic progression in A, then it easy to see that for any x, the tuple (x, x + a, x + b + b)
forms a triangle in the graph. In fact, for each x ∈ H, there is a bijection between arithmetic
progressions (a, b, c) and triangles of the form (x, y, z). Thus, the total number of triangles in the
graph is |H|× (# of length-3 progressions in A).

Since the total number of triangles in the graph is at least εn3 = 9ε|H|3, the total number
of length-3 progression in A is at least 9ε|H|2. This is counting the “trivial progressions” where
a = b = c, but even when we exclude those progression we are left with at least 9ε|H|2 − δ|H|
length-3 progressions in A. This is positive when |H| is large enough. Thus, Theorem 2.1.1 follows
from Lemma 2.2.1.
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2.3 How (1) implies (2).

We begin with some definitions:

Definition 2.3.1. For disjoint vertex sets A,B, the density between A and B is

d(A,B) =
# edges between A and B

|A||B|

Definition 2.3.2. Two disjoint vertex sets are ε-regular if ∀S ⊆ A where |S| ≥ ε|A|, and ∀T ⊆ B
where |T | ≥ ε|B|, it holds that

|d(S, T )− d(A,B)| ≤ ε

Informally, a bipartite graph is ε-regular if its edges are dispersed like a random graph’s.

Lemma 2.3.3 (Szemeredi’s Regularity Lemma). ∀ε, t, ∃k = k(ε, t), k ≥ t st for every graph G =
(V,E) there exists a partition of G into (V1, ..., Vk) where |V1| = |V2| = ... = |Vk−1| ≥ |Vk| and at
least (1− ε)

(
k
2

)
pairs (Vi, Vj) are ε-regular.

Informally, Szemeredi’s regularity lemma says that all graphs are mostly composed of random-
looking bipartite graphs.

We would like to show that the Regularity Lemma (lemma 2.3.3) implies the Triangle Removal
Lemma (lemma 2.2.1). To see this, start with an arbitrary graph G. The Regularity Lemma says
we can find a δ

10 -regular partition with t = 10
δ into k = k( δ10 ,

10
δ ) blocks. Using this partition, we

define a reduced graph G′ as follows:

• Remove all edges between non-regular pairs.

Since there are at most δ
10

(
k
2

)
non-regular pairs, and at most (nk )2 edges between each pair,

this step removes at most δ
10n

2 edges.

• Remove all edges inside blocks.

Since there are k blocks, and each block contains at most
(
n/k

2

)
edges, this step removes at

most n2

k ≤
δ
10n

2 edges.

• Remove all edges between pairs of density less than δ
2 .

There are at most δ
2(nk )2 edges between a pair of density less than δ

2 , and at most
(
k
2

)
total

such pairs, so this step removes at most δ
2n

2 edges.

In total the reduced graph G′ is at most δ
10 + δ

10 + δ
2 < δ far from the original graph G. Thus

if G′ contains no triangle, the first condition of the Triangle Removal Lemma is satisfied (since all
the triangles can be removed from G by breaking ≤ δn2 edges). For the remainder of the proof
then, we assume that G′ does contain a triangle, and we wish to show that the second condition of
the Triangle Removal Lemma is satisfied (i.e. there must by ≥ εn3 triangles in G).

If G′ does contain a triangle, it must go between three different blocks, call them A,B, and C.
Let m = n/k be the size of the blocks. Since G′ does not contain any edges between low-density
pairs of blocks, we know that if there is an edge between A and B, then in fact there must be many
edges.
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More quantitatively, we claim that at most m/4 vertices in A can have ≤ δ
4m neighbors in B.

Otherwise, there would be a subset of A, call it A′, where |A′| ≥ |A|/4, such that d(A′, B) ≤ δ
4 . This

violates the conditions of the Regularity Lemma, since |d(A,B) − d(A′, B)| ≥ δ
4 ≥

δ
10 . Likewise,

the same argument shows that at most m/4 vertices in A can have ≤ δ
4m neighbors in C.

Since at most m/4 vertices in A can have ≤ δ
4m neighbors in B, and at most m/4 vertices in

A can have ≤ δ
4m neighbors in C, there must be at least m/2 vertices in A that have both ≥ δ

4m

neighbors in B and ≥ δ
4m neighbors in C.

Consider a single such vertex from A. Let S be its neighbor set in B and T be its neighbor set
in C, where |S| ≥ δ

4m and |T | ≥ δ
4m. How many edges go between S and T? Since d(B,C) ≥

δ
2 , and B and C are δ

10 -regular, the number of edges going between S and T must be at least
( δ2 −

δ
10)|S||T | ≥ δ

4 |S||T | ≥
δ3

64m
2. Thus a single vertex from A with high degree in both B and C

accounts for at least δ3

64m
2 triangles in G′. Since there are at least m/2 such vertices from A, the

total number of triangle must be at least δ3

128m
3 = δ3

128k3n
3, which is what we wanted to show.

2.4 Brief Sketch of (1)

In this section we provide a brief sketch of the Regularity Lemma, the only remaining piece of the
proof of Szemeredi’s Theorem for k = 3. A more detailed proof will be given in a later lecture.

To prove the Regularity Lemma, we start with an arbitrary partition of the graph G into
t subsets. If this partition is ε-regular, then we are done. Otherwise, we iteratively refine the
partition until we get one that is ε-regular. We do this as follows:

If a partition is not ε-regular, that means there exist at least ε
(
t
2

)
non-regular pairs Vi, Vj . Let

Si and Tj be witnesses to the non-regularity of Vi, Vj ; in other words, Si ⊆ Vi, |Si| ≥ ε|Vi| and
Tj ⊆ Vj , |Tj | ≥ ε|Vj | where |d(Si, Tj)− d(Vi, Vj)| > ε. We refine the partition by subdividing all the
subsets into intersections of Vi, Vi\Si, Vj , Vj\Tj over all non-regular pairs (i, j) (we actually even
further refine the partition so that the resulting sets have equal size).

To analyze this process, we examine the quantity
∑

i,j
|Vi||Vj |
n2 d2(Vi, Vj). This can be thought

of as the variance of the densities between the sets containing two randomly chosen vertices. One
can show that this quantity always increases upon refinement, and each iteration of the above
process increases it by at least poly(ε). Since the quantity is at most 1, the refinement process
must terminate after poly(1

ε ) iterations.



3
The Sum Product Theorem and its Applications

Avi Wigderson

Scribe(s): Aaron Roth and Cathy Lennon

Summary: This lecture contains the statement of the sum-product theorem and a
broad survey of its applications to many areas of mathematics. Finally it sketches a
proof; a full proof of the sum-product theorem is contained in the next lecture.

3.1 Preliminaries and Statement of the Sum-Product Theorem

Let F be a field, and let A ⊆ F be an arbitrary subset. In particular, A is not necessarily a subfield,
and so is not necessarily closed under either field operation. We may therefore wish to study how
close A is to a closed set under each field operation. The following definitions capture this:

Definition 3.1.1. For A ⊆ F, the sumset A+A is:

A+A = {a+ a′ : a, a′ ∈ A}

Definition 3.1.2. For A ⊆ F, the product set A×A is:

A×A = {a× a′ : a, a′ ∈ A}

If A is a subfield of F, then |A+A| = |A×A| = |A|. If A is not closed under some operation ·,
then |A ·A| > |A|. In principle, |A ·A| can be as large as Ω(|A|2), but we may be interested in sets
A such that |A+A| or |A×A| is small.

3.1.1 Over the Reals

Example 3.1.3. For F = R and A = {1, 2, 3, . . . , k} we have:

• |A+A| < 2|A| (pairwise addition of elements in A yields integers in {2, ..., 2k}

• |A×A| = Ω(|A|2)

9
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For F = R and B = {1, 2, 4, . . . , 2k} we have:

• |B ×B| ≤ 2|B| (since this is {2a : a ∈ |A+A|})

• |B +B| = Ω(|B|2) (Like the set of all length-k binary strings with norm 2)

In these examples, either the sumset or the product set is small, but not both. For F = R, does
there exist an A ⊂ R for which max{|A + A|, |A × A|} is ‘small’? The sum-product theorem over
the reals tells us that there is not:

Theorem 3.1.4 (Sum Product Theorem for F = R [ES83a]). For F = R, ∃ε > 0 such that ∀A ⊂ F
either:

1. |A+A| ≥ |A|1+ε

2. |A×A| ≥ |A|1+ε

The best ε known in the above theorem is 4/3, but it is conjectured that it holds for ε = 2−o(1).

3.1.2 Over a Finite Field

Suppose F is a finite field. Can Theorem 3.1.4 still hold? Not quite as stated:

• If A ⊂ F such that |A| ≥ CF for some constant C, neither |A+A| nor |A×A| can exceed |A|
by more than a constant factor. We must therefore have a condition that A is not ‘too big.’

• If A is a subfield of F then it is closed under both field operations, and so |A+A| = |A×A| =
|A|. We must therefore have a condition that F contains on subfields.

The following version of the sum-product theorem holds for finite fields Fp for p prime (this
restriction guarantees that there are no nontrivial subfields – variants of this theorem are possible
for other fields with small subfields.)

Theorem 3.1.5 (Sum Product Theorem for F = Fp [BT04][Kon03]). For F = Fp for p prime,
∃ε > 0 such that ∀A ⊂ F with |A| ≤ |F|.9, either:

1. |A+A| ≥ |A|1+ε

2. |A×A| ≥ |A|1+ε

The best known ε in the above theorem is .001, and it is known that ε cannot be larger than
3/2.

3.2 Applications

The sum-product theorem has wide ranging applications. In this section, we survey various fields
of mathematics and give theorem statements that were state-of-the-art before application of the
sum-product theorem, and then the corresponding improvement possible with the sum-product
theorem.
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3.2.1 Combinatorial Geometry

Consider the geometry of a plane F2. Let P be a set of points in F2 of cardinality n, and let L be
a set of lines in F2 also of cardinality n. A natural quantity to study is

I = {(l, p) : l ∈ L, p ∈ P such that point p lies on line l}

the set of incidences of points in P on lines in L. Using only simple combinatorial facts about lines
and planes we may prove the following simple bound:

Theorem 3.2.1.
|I| ≤ O(n3/2)

Proof. Let

δp,l =
{

1, if point p lies on line l;
0, otherwise.

Let f(l) =
∑

p∈P δp,l denote the number of points incident on line l and let g(p) =
∑

l∈L δp,l denote
the number of lines incident on a point p. Node that |I| =

∑
p∈P g(p) =

∑
l∈L f(l). then:

|I| =
∑
l∈L

f(l)

=
∑
l∈L

1 · f(l)

≤
√
n ·
√∑

l∈L
f(l)2

=
√
n ·
√∑

l∈L
(
∑
p∈P

δp,l)(
∑
p∈P

δp,l)

=
√
n ·
√ ∑
p,p′∈P

∑
l∈L

δp,lδp′,l

=
√
n ·
√∑
p∈P

g(p) +
∑
p 6=p′

∑
l∈L

δp,lδp′,l

≤
√
n ·
√
|I|+ n2

where the first inequality follows from Cauchy-Schwartz, and the second follows from the fact that
there can be at most one line incident to any two distinct points, and there are fewer than n2 pairs
of points. Solving for |I| we get the desired bound.

For F = R a tighter non-trivial bound is possible without the sum-product theorem:

Theorem 3.2.2 ([?],[Ele97]). For F = R |I| ≤ O(n4/3)

With the sum-product theorem, a big improvement is possible (this is a non-trivial consequence
of a statistical-version of the sum-product theorem):

Theorem 3.2.3 ([BT04]). For F = Fp with p prime, |I| ≤ n3/2−ε
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3.2.2 Analysis

Consider the following question which has many applications in analysis/PDE: what is the smallest
area of a figure which contains a unit segment in every direction? 1

In the Reals

Besicovitch proved:

Theorem 3.2.4 ([Bes63]). One can construct S ⊆ R2 with arbitrarily small area such that S
contains a unit segment in every direction.

The construction is as follows: begin with a square of side length 2 with center O and add lines
across the diagonals, partitioning it into four isosceles right triangles with hypotenuse of length 2
with common vertex O. Partition each hypotenuse into n equally sized segments, where the value
of n depends on how small of an area is desired. For each endpoint, draw a line from O to the
endpoint. This further partitions the square into 4n “elementary triangles”. The resulting object
looks like:

By constructing the figure like this, it is clear that considering each of the 4n elementary
triangles and all possible segments with one endpoint at O and the other at a point in the base of
the triangle, then the collection of all such segments for all triangles will have a range of 360◦ and
each such segment will have a length of at least 1. Therefore,the collection of these 4n triangles
contains a unit segment in all possible directions. Of course, the area of this square is quite large.

1Examples of such figures are a circle of radius 1 (area= π/4 ≈ .78) and an equilateral triangle of height 1 (area=
1√
3
≈ .58). It was also (falsely) conjectured that the hypocycloid inscribed in a circle of diameter 3/2 was the figure

of smallest area.
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They key to his construction is following observation: arbitrary translations of the elementary
triangles does not affect which unit segments are contained within the triangles. By translating
them in such a way that they overlap, we can decrease the total area of the figure while maintaining
the property of containing a unit segment in all directions.

We describe the translations for the bottom triangle, but the same procedure may be plied to
the other three, resulting in a solution to the problem. For any integer p ≥ 2 consider the sequence
of triangles ∆2, ∆3,...,∆p, where each is a right isosceles triangle, and ∆k has height k/p, base
partitioned into 2k−2 segments, and a line joining each segment endpoint to the common vertex.
Thus triangle ∆k consists of 2k−2 elementary triangles. Each ∆k+1 can be constructed from ∆k

by bisecting each of the elementary triangles of ∆k through their base, and scaling each so that
it now has height k + 1. This will create a series of overlapping triangles that can be translated
to construct ∆k+1. This process is known as “bisection and expansion”. By starting with triangle
∆2, and then using this technique repeatedly, after p − 2 steps, we will have 2k−2 overlapping
elementary triangles which can be translated to form ∆p. Analysis of the process of bisection and
expansion shows that each step increases the total area by at most 1

p2 and so at the final step the
constructed object S1 has area 2

p . Choosing p > 8/ε will make the area of S1 less than ε/4. Doing
this for each of the four original right triangle results in a figure of area at most ε. Since this figure
consists of translations of the elementary triangles described above, it contains a unit segment in
every direction.

One can also ask this question for Rd for d > 2 or for measures other than the Lebesque
measure. A third variation is to consider this question for finite fields, and it is in this case that
the sum-product theorem gives interesting results.

In Finite Fields

Call a set S ⊂ (Fp)d a Kakeya set if S contains a line in all possible directions (for large p). By
this we mean that for all b ∈ Fdp \ {0} there is an a ∈ Fdp such that a + tb ∈ S for all t ∈ Fp. Any
particular line is of the form a + tb and since t ∈ Fp, each line contains p points. Define B(d) to
be the smallest r such that there exists a Kakeya set S with |S| = Ω(pr). It has been conjectured
that B(d) = d.

Before the sum-product theorem, the following was known:

Theorem 3.2.5. (Trivial) B(d) ≥ d/2

Theorem 3.2.6 ([Wol99]). B(d) ≥ d/2 + 1

However, one can use the sum-product theorem to show that:

Theorem 3.2.7 ([BT04]). B(d) ≥ d/2 + 1 + 10−10

We will show the trivial bound of B(d) ≥ d/2. The proof relies on the following fact: if P is a
collection of points in Fdp and L is a collection of lines in Fdp, then

{(p, l) ∈ P × L : p ∈ L}| ≤ min(|P |
1
2 |L|+ |P |, |P ||L|

1
2 + |L|)

To apply this, let P be any set of points in Fdp which contains lines in every possible direction,

and set L to be a set consisting of these lines. Since there are pd−1
p−1 different directions, it follows
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that |L| ≥ pd−1
p−1 . Since we assume that all of the points in each line lie in P , and since each line

has p points, we have

p|L| = |{(p, l) ∈ P × L : p ∈ L}| ≤ |P ||L|
1
2 + |L|

=⇒ |P | ≥ |L|
1
2 (p− 1) ≥ (

pd − 1
p− 1

)
1
2 (p− 1) = ((pd − 1)(p− 1))

1
2 = (pd(p− 1− 1

pd−1
+

1
pd

))
1
2 ≥ pd/2

So any Kakeya set S satisfies |S| ≥ pd/2 and hence B(d) ≥ d/2.

3.2.3 Number Theory

For F = Fp a finite field of prime order, let G be a multiplicative subgroup of F∗. Define the fourier
coefficient at a relative to G to be:

Definition 3.2.8 (Fourier coefficient at a).

S(a,G) =
∑
g∈G

ωa·g

A natural quantity to study is the maximum fourier coefficient of any element in F∗:

S(G) = max
a∈F∗
|S(a,G)|

We may provide a trivial bound:

Theorem 3.2.9.
S(G) ≤ |G|

Proof.

S(G) = max
a∈F∗
|
∑
g∈G

ωa·g|

≤ max
a∈F∗

∑
g∈G
|ωa·g|

=
∑
g∈G

1

= |G|

We would instead like to show that S(G) ≤ |G|1−ε.
Without the sum-product theorem, this was demonstrated for |G| ≥ p1/2 [Wol99], |G| ≥ p3/7

[HB96], and |G| ≥ p1/4 [KS99].
Using the sum-product theorem, more general results can be derived:

Theorem 3.2.10 ([BT04]). For F = Fp with p prime, and |G| ≥ pδ, S(G) ≤ |G|1−ε(δ)

Theorem 3.2.11 ([BK06]). For F = Fp with p prime, and |G| ≥ pδ, S(Gk(δ)) ≤ |Gk|1−ε(δ)

Bourgain and Chung generalize these results to other fields.
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3.2.4 Group Theory

Suppose that H is a finite group, and T is a set of generators for H. We can then study the
structure of H with respect to T :

Definition 3.2.12 (Cayley Graph). Cay(H;T ), the Cayley Graph of H and T is the graph with
vertex set V = H, and edge set E = {u, v : u · v−1 ∈ T}. That is, the vertex set is the set of group
elements, with edges corresponding to walks we can take among group elements by multiplying by
the generators in T .

One interesting feature of a Cayley graph is its diameter Diam(H;T ), the longest path between
any two group elements in Cay(H;T ). If Cay(H;T ) is an expander graph, then the second largest
eigenvalue over the matrix defining the markov process of a random walk over Cay(H;T ), λ(H;T ) ≤
1− ε, and so its diameter is O(log |H|).

For H = SL(2, p), the group of 2×2 invertible matrices over Fp, Selberg, Lubotsky Phillips and
Sarnak, and Margulis showed without the sum-product theorem a few sets of generators T for which
Cay(H;T ) is an expander [Sel65] [LS86] [Mar73]. Using the sum product theorem, Helfgott showed
that for all T , the diameter of Cay(H;T ) is < polylog(|H|) [Hel]. Also using the sum-product
theorem, Borgain and Gamburd showed that for random T with |T | = 2, Cay(H;T ) is an expander
(with diameter O(log |H|)) with high probability [BG06]. [BG06] also show that if < T > is not
cyclic in H =SL(2,Z), then Cay(H;T ) is an expander.

3.2.5 Randomness Extractors and Dispersers

Randomness is a powerful tool used in many areas of computer science, and has practical applica-
tions because randomness appears to be prevalent in our physical experience of the world. However,
theoretical applications often require uniform random bits, whereas when we observe randomness
in nature, it is not of this clean form. We may have access to a random variable X with high
entropy (in the sense that it would take many uniform random bits to sample from X), but that is
far in statistical distance from the uniform distribution Un – and perhaps the exact distribution of
X is unknown. If S is a such a class of probability distributions over {0, 1}n, then X ∈ S is often
called a ‘weak source of randomness’.

In order to make use of X in applications that require uniform random bits, we would like
extractors and dispersers:

Definition 3.2.13 ((S, ε)-Disperser). A function f : {0, 1}n → {0, 1}m for which all X ∈ S satisfies:

|f(X)| ≥ (1− ε)2m

is an (S, ε)-disperser. That is, f(X) is a distribution with large support (although is not necessarily
distributed close to uniform).

Definition 3.2.14 ((S, ε)-Extractor). A function f : {0, 1}n → {0, 1}m for which all X ∈ S
satisfies:

‖f(x)− Um‖1 ≤ ε

is an (S, ε)-disperser. That is, f(X) is ε-close to the uniform distribution (and in particular, must
have large support).
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The existence of extractors and dispersers is a Ramsey/Discrepancy theorem, but their explicit
polynomial time construction is an important research area. Extractors and dispersers can be
either randomized (seeded), or deterministic. It is easy to see that there cannot be deterministic
constructions that work with all high entropy sources X, but we can avoid needing any uniform
random bits if we make some assumption about the structure of S.

For example, let S = Lk, the set of affine subspaces of Fn2 of dimension ≥ k. Say that f is
optimal if m = Ω(k) and ε = 2−Ω(k) (information theoretic bounds tell us we cannot hope that
f(X) has higher entropy than X). Before the use of the sum-product theorem, it was known via
the probabilistic method that there exist optimal affine extractors for all k ≥ 2 log n. Explicit
constructions for such extractors were known only for k ≥ n/2. Using the sum-product theorem,
better results are possible: [BW05] give an explicit construction for an affine disperser with m = 1
for all k ≥ δn. [Bou07] gives an explicit construction for an optimal affine extractor for all k ≥ δn.
[GR05] give extractors for large finite fields of low dimension.

Alternately, we may consider S = Ik = {(X1, X2) : X1, X2 ∈ {0, 1}n independent, H∞(Xi) ≥ k}
where H∞(Xi) ≥ k implies that no element in Xi has probability greater than 2−k. For simplicity,
it is helpful to think about Xi as the uniform distribution over a support of k elements. Again,
f(X1, X2) cannot have higher entropy than (X1, X2), f is optimal if m = Ω(k) and ε = 2−Ω(k).
Before the sum-product theorem, Erdos (using the probabilistic method) showed that there exists
an optimal 2-source extractor for all k ≥ 2 log n in proving the existence of Ramsey Graphs2.
[CG88] and [Vaz87] gave an explicit construction for an optimal 2-source extractor for all k ≥ n/2.
Using the sum-product theorem, (slightly) better results are possible: [Bou07] gives an explicit
optimal 2-source extractor for k ≥ .4999n. [BW05] give an explicit 2-source disperser for m = 1
and k ≥ δn (giving new constructions for bipartite Ramsey graphs), and [BW06] give an explicit
2-source disperser for m = 1 and k ≥ nδ.

A Statistical Version of the Sum Product Theorem

The sum-product theorem tells us about the size of sets, and so is useful in constructing dispersers
from a constant number of independent sources 3. To construct extractors, however, which require
not only that f(A) have large support, but also that it be almost uniformly distributed, we would
like a statistical analogue of the sum-product theorem. Intuitively, we would like a statement
about the size of A in terms of its entropy. There are several measures we might consider: H0(A) =
|support(A)| is simply the measure we have been using for the standard sum-product theorem.
Shannon entropy HShannon =

∑
i∈A−pi log pi is one possibility. A stronger measure is H2(A) =

− log ||A||2 ≈ H∞(A) = mini∈A− log(pi). Note that we have: H2 ≤ HShannon ≤ H0.
We may rephrase our existing result over Fp:

2A Ramsey graph has no clique and no independent set of size k. Note that a two-source disperser for Ik with
m = 1 f : {0, 1}2n → {0, 1} provides a construction for a bipartite Ramsey graph. Let the graph consist of two
parts, each consisting of 2n vertices, corresponding to the binary strings of length n. For two vertices x, y in different
parts, let there be an edge (x, y) if f(x, y) = 1. In any two subsets S, T for |S|, |T | ≥ k in different parts, we are
guaranteed by the definition of a disperser that |f(S, T )| > 1 ⇒ f(S, T ) = {0, 1} since we may consider S and T to
be the uniform distribution over k elements. Therefore, between any two subsets |S|, |T | ≥ k in different parts, there
are always edges, but never all of the possible edges, giving us a bipartite Ramsey graph.

3Let f(x, y, z) = x × y + z. As a corollary of the sum-product theorem, we know that |A × A + A| ≥ |A|1+ε for
some constant ε. So long as |A| ≥ Fδp for some constant δ, by composing f with itself a constant number of times to
obtain g, we have g(A, . . . , A) = Fp, and so we have a disperser.
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Theorem 3.2.15 (Sum Product Theorem Over Fp [BT04] [Kon03]). There exists an ε ≥ 0 such
that for all A ⊆ Fp such that H0(A) ≤ .9 log p, either:

1. H0(A+A) > (1 + ε)H0(A) or

2. H0(A×A) > (1 + ε)H0(A).

We would like an identical result in which we could replace H0 with H2 (or H∞), but this is not
possible. In particular, for every prime field F, there is a distribution uniform over a subset of F of
size 2k (with k < 0.9 log p) such that both A+A and A×A put a constant probability over a set of
size at most O(2k)4. This gives H∞(A) = k, H∞(A+A) ≤ k+log 1/c and H∞(A×A) ≤ k+log 1/c
for some constant c, which violates our desired sum-product theorem. An analogous theorem is
possible, however, if we replace sums and products with a convolution. Again, rephrasing our
original theorem:

Theorem 3.2.16 ([BT04] [Kon03]). There exists an ε ≥ 0 such that for all A ⊆ Fp such that
H0(A) ≤ .9 log p:

H0(A×A+A) > (1 + ε)H0(A)

Now a statistical analogue is possible, as proven by Barak, Impagliazzo, and Wigderson:

Theorem 3.2.17 ([BW04]). There exists an ε ≥ 0 such that for all A ⊆ Fp such that H2(A) ≤
.9 log p:

H2(A×A+A) > (1 + ε)H2(A)

Suppose that A,B,C are independent distributions over Fp. Let the rate of distribution X be
r(X) = H2(X)/ log p, and let r = min(r(A), r(B), r(C)). [BW04] show the following:

There exists a constant ε > 0 such that:

• If r ≤ 0.9, then r(A,B,C) ≥ (1 + ε)r

• If r > 0.9, then r(A,B,C) = 1.

Given this, and the statistical analogue of the sum-product theorem, we may construct extrac-
tors in the way that we were able to construct dispersers. We define:

• f1(A1, A2, A3) = A1 ×A2 +A3

• f t+1(A1, A2, . . . , A3t+1) = f1(f t(A1, . . . , A3t), f t(A3t+1, . . . , A2·3t), f t(A2·3t+1, . . . , A3t+1))

By composing f1 with itself t times, we are able to convert 3t sources with entropy H2(A) to a
single source with entropy at least (1 + ε)tH2(A). Using this construction, [BW04] give optimal
explicit constructions for extractors over the set

S = {(A1, . . . , Ac) : Ai independent over {0, 1}n with H2(Ai) > k}

for k = δn and c = poly(1/δ) Note that for δ > 0 a constant, this gives an extractor given only a
constant number of independent input sources. Without using the sum-product theorem, Rao gets
a stronger result, giving an explicit construction for optimal extractors over S with k = nδ and
c = poly(1/δ) [Rao06].

4Let A put probability 1/2 on an arithmetic progression, and probability 1/2 on a geometric progression. Then,
as we saw above, A+A will have probability 1/2 on a set of size 2|A|, and A×A will have probability 1/2 on a set
of size 2|A|, which is what we need.
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Definition 3.2.18 (Condenser). For X a distribution on {0, 1}n, and r(X) = H2(X)/n, then
fc : {0, 1}n → ({0, 1}m)c is a condenser if there exists a constant ε > 0 such that for all X with
r(X) ≤ .9:

∃c > 0 : r(fc(X)) ≥ (1 + ε)r(X)

Intuitively, r is a measure of how close to uniform X is. fc takes a weak random variable, creates
a random variable over a possibly smaller space that is closer to uniform.

Using the sum product theorem, [BW05] give a condenser that iteratively boosts r = δ to
r = 0.9 with c = poly(1/δ) for m = Ω(n). For constant δ therefore, c is constant.

3.3 Proof Sketch of the Sum-Product Theorem

Recall the statement of the sum-product theorem:

Theorem 3.3.1 ([BT04]). Let F = Fp, then for all δ < .9 there exists an ε > 0 such that for any
A ⊂ F satisfying |A| = |F |δ, either |A+A| ≥ |A|1+ε or |A×A| ≥ |A|1+ε.

This theorem will be a consequence of the following two lemmas.

Lemma 3.3.2. There exists a rational expression R0 such that for all A, |R0(A)| > |A|1+δ.

where a rational expression R(A) is a rational function in A, for example R(A) = (A+A−A×
A)/(A×A×A).

Proof. Define the rational expression R0(A) := (A′−A′)/(A′−A′) = A′′, where A′ := (A−A)/(A−
A). Also, define δ′, δ′′ to be the values such that |A′| = |F |δ′ and |A′′| = |F |δ′′ . Then we claim
that R0 is the desired rational expression. This will follow from the following claim (to be proven
subsequently): if δ ∈ (1/(k + 1), 1/k) then δ′ > 1

k . We know that there is some k such that δ

is in the open interval (1/(k + 1), 1/k), (note here the strict inclusion since |F |
1
k , |F |

1
k+1 6∈ N but

|A| ∈ N). Applying the lemma twice gives that δ′′ > 1/(k − 1) and then

δ(1 + δ) <
1
k
∗ k + 1

k
=
k + 1
k2

<
k + 1
k2 − 1

=
1

k − 1
< δ′′

Putting this together gives
|F |δ(1+δ) < |F |δ′′ = |R0(A)|

=⇒ |R0(A)| > (|F |δ)1+δ
= |A|1+δ

which is what we wanted.
It is left to prove the claim: assume otherwise, ie that δ′ < 1

k . Construct a sequence s0 =
1, s1, ..., sk ∈ F such that each sj satisfies sj 6∈ s0A

′ + s1A
′ + ...sj−1A

′. It is always possible to find
such an sj when j ≤ k because otherwise this would imply that s0A

′ + ...sj−1A
′ = F =⇒ |A′| >

|F |
1
j−1 , contradicting our assumption that δ′ < 1

k .
Next, define a function g : Ak+1 → F by g(x0, ..., xk) =

∑
sixi. By our choice of k, we have

|A|k+1 > |F |, so g cannot be injective, and so there exists x 6= y such that
∑
sixi = g(x) = g(y) =∑

siyi. Choose j to be the largest index where xj and yj differ. Then
∑
sixi =

∑
siyi =⇒∑

si(xi − yi) = 0 =⇒
∑

i≤j si(xi − yi) = 0 =⇒ sj =
∑

i<j si(xi − yi)/(yj − xj). Each (xi −
yi)/(yj−xj) ∈ A′ and so sj =

∑
i<j si(xi−yi)(yj−xj) ∈ s0A

′+s1A
′+...sj−1A

′, a contradiction.
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Lemma 3.3.3. If |A + A| < |A|1+ε and |A × A| < |A|1+ε then for all R there exists a c = c(R)
such that there is some B ⊆ A with |B| > |A|1−cε and |R(B)| < B1+cε.

We list only the ingredients for proving Lemma 2. A full proof will be given in the next lecture.
Let G be an abelian group, A ⊆ G, ε > 0 arbitrary, then the following theorems hold:

Theorem 3.3.4 ([Rao06]). |A+A| < |A|1+ε =⇒ |A−A| < |A|1+2ε

Theorem 3.3.5 ([Plu69],[Rao06]). |A+A| < |A|1+ε =⇒ |A+ kA| < |A|1+kε

Theorem 3.3.6 ([BS94], [Gow98]). ||A + A||−1 < |A|1+ε =⇒ ∃A′ ⊆ A, |A′| > |A|1−5ε but
|A′ +A′| < |A′|1+5ε.

[The theorem now follows from these lemmas: assume for contradiction that the theorem is
false, ie that there is some δ < .9 such that for all ε > 0 there is some set A, |A| = |F |δ with
both |A + A| ≤ |A|1+ε and |A × A| ≤ |A|1+ε. Let R0 be as in LEMMA 1. Now A satisfies the
hypotheses of LEMMA 2 and so considering R = R0, there is a c, B with |B| > |A|1−cε such that
|B|1+δ < |R0(B)| < |B|1+cε]

3.4 Conclusion

What we should take away from this survey lecture is that the sum-product theorem, despite having
a simple statement, is fundamental, and has applications to many areas of mathematics (many more
than have been touched upon here). It has proven to be useful in computer science, and presumably
has further potential. We have touched upon the sum-product theorem over R and Fp for prime p,
but it has other extensions: for example, over rings.

Unresolved questions about the sum-product theorem include determining the optimal value for
ε. Over the reals, it is believed to be 1. It is known that over finite fields, we must have ε ≤ 1/2.

Open questions for which the sum-product theorem may prove useful include the construction
of an extractor for entropy < .4999n, and the construction of a disperser for entropy << no(1).
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4
Proof of the Sum-Product Theorem

Boaz Barak

Scribe(s): Arnab Bhattacharyya and Moritz Hardt

Summary: We give a proof of the sum-product theorem for prime fields. Along the
way, we also establish two useful results in additive combinatorics: the Plünnecke-Ruzsa
lemma and the Balog-Szemerédi-Gowers lemma.

4.1 Introduction

Given a finite set A ⊂ Z, let A + A
def
= {a + b : a, b ∈ A} and A · A def

= {a · b : a, b ∈ A}. Then,
the sum-product theorem states that either A + A or A · A is a large set; more precisely: there
exists an ε > 0 such that max{|A + A|, |A · A|} ≥ |A|1+ε for any set A. The two contrasting
situations of a set having a large doubling and a set having a large squaring are realized by a
geometric progression and an arithmetic progression respectively. If A is a geometric progression
of length n, then |A · A| ≤ O(n) while |A + A| ≥ Ω(n2). On the other hand, if A is an arithmetic
progression of length n, then |A+A| ≤ O(n) while |A ·A| ≥ Ω̃(n2). So, the sum-product theorem
can be thought of as roughly saying that any set is either “close” to an arithmetic progression or
a geometric progression.

The sum-product theorem for integers was formulated by Erdös and Szemerédi [ES83b] who
conjectured that the correct ε is arbitrarily close to 1. The theorem for ε = 1

4 was proved by Elekes
in [Ele97]. Here, though, we are going to examine the sum-product theorem for finite fields. That
is, the case when A is a subset of a finite field F. Clearly, the relationship between |A + A| and
|A · A| is uninteresting when A equals F or, in general, when A is any subfield of F because then,
|A+A| = |A ·A| = |A|. Therefore, in order to avoid trivialities as well as technical complications,
we are going to insist that F be a prime field (so that it does not contain any proper subfield) and
that |A| be significantly smaller than |F| (so that A is not the entire field). In such a setting, where
|A| < |F|0.9, [BT04] and [Kon03] proved the sum-product theorem with ε ≈ 0.001. We base our
exposition on [Gre05, TV06, BW04].

21
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4.2 The Sum-Product Theorem for Prime Fields

Theorem 4.2.1 (Sum-Product Theorem). Given F a prime field, A ⊆ F with |A| < |F|0.9, then
there exists ε > 0 such that max{|A+A|, |A ·A|} ≥ |A|1+ε.

Our proof for Theorem 4.2.1 is based on two key lemmas. Intuitively, the first lemma will say
that if both |A + A| and |A · A| are small, then so is |r(A)| where r(·) is any rational expression.
The second lemma will say that for a particular rational expression, r∗(·), if |A+ A| is small, it is
true that |r∗(A)| is large. So, if both |A + A| and |A · A| are small, the two lemmas together will
yield a contradiction.

In truth, the lemmas that we can actually prove are not as strong as those described in the
above paragraph, but they suffice for the proof.

Lemma 4.2.2. For any 0 < ρ < 1, if |A ·A| ≤ |A|1+ρ and |A+A| ≤ |A|1+ρ, then for every rational
expression r(·), there exists B ⊆ A such that |B| ≥ |A|1−O(ρ) and |r(B)| ≤ |A|1+O(ρ).

Lemma 4.2.3. For prime field F and A ⊆ F with |A| ≤ |F|0.9 and |A+A| ≤ |A|1.1,∣∣∣∣A(AA−AAA−A
+A

)∣∣∣∣ ≥ |A|1.1
Theorem 4.2.1 now follows simply from the two lemmas.

Proof of Theorem 4.2.1 from Lemma 4.2.2 and Lemma 4.2.3. For the sake of contradiction, sup-
pose there is an A ⊆ F such that |A| ≤ |F|0.9 but |A+ A| and |A · A| are both less than |A|1+ε for
any arbitrarily small constant ε > 0. By Lemma 4.2.2, there is an absolute constant c for which
there exists B ⊆ A with |B| ≥ |A|1−O(ε) such that

∣∣∣B (BB−BBB−B +B
)∣∣∣ ≤ |A|1+O(ε) ≤ |B|1+cε. Also,

note that |B+B| ≤ |A+A| < |A|1+ε ≤ |B|1+O(ε). So, by Lemma 4.2.3,
∣∣∣B (BB−BBB−B +B

)∣∣∣ ≥ |B|1.1.
Therefore, cε ≥ 0.1 which means ε ≥ 0.1/c, a contradiction to the fact that ε can be arbitrarily
close to 0.

What remains now is to prove Lemma 4.2.2 and Lemma 4.2.3.

4.3 Two Useful Tools

In order to prove Lemma 4.2.2 and Lemma 4.2.3, we will establish two generally useful tools: the
Plünnecke-Ruzsa lemma and the Balog-Szemerédi-Gowers lemma. Both of these results hold when
the set elements are from an arbitrary abelian group. So, any true statement made in this section
about sums and differences of elements of a set implies a corresponding true statement about
products and quotients (simply by changing the name of the group operation).

4.3.1 The PR Lemma

The Plünnecke-Ruzsa (PR) lemma states that if A and B are of equal size and if |A+B| is small,
then |n1A−n2A+n3B−n4B| is also small where n1, n2, n3, n4 are positive integers. So, it cannot
be the case that |A+B| is small but |A+B +B| is large if A and B are of equal size. Note that
such a statement has the flavor of Lemma 4.2.2 but it involves just one operation.
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Lemma 4.3.1 (PR Lemma [Ruz96, Plü69] (“Iterated Sums Lemma”)). For any abelian group G, if
A,B ⊆ G such that |A+B| ≤ K|A| and1 |B| = |A|, then |A±A±· · ·±A±B±· · ·±B| ≤ KO(1)|A|
(where the O(1) notation hides a constant depending on the number of +’s and −’s).

The following corollary summarizes the take-home messages that will be useful later on.

Corollary 4.3.2. For any abelian group G, if A,B ⊆ G with |A| = |B|:

• |A+A| ≤ KO(1)|A| ⇔ |A−A| ≤ KO(1)|A|

• |A+B| ≤ K|A| ⇒ |A+A| ≤ KO(1)|A|

Also, if |A · B| ≤ K|A| with |B| = |A|, then |An1A−n2Bn3B−n4 | ≤ KO(1)|A| for positive integers
n1, n2, n3, n4 (where the O(·) notation hides a constant depending on n1, n2, n3 and n4).

Proof. For the first bulleted item, one direction of the implication follows from Lemma 4.3.1 by
setting B = A while the other direction follows from setting B = −A. The second bulleted item
is a special case of Lemma 4.3.1. Finally, the last sentence in the corollary is the multiplicative
version of Lemma 4.3.1, obtained by renaming the addition operation to be multiplication.

Now we present a short ingenious proof of the PR Lemma due to Ruzsa.

Proof of Lemma 4.3.1. We first prove that the following two claims imply the lemma.

Claim 4.3.3. |C − C| ≤ |C−D|
2

|D| . In particular, if |D| ≥ K−O(1)|C| and |C −D| ≤ KO(1)|C|, then

|C − C| ≤ KO(1)|C|.

Claim 4.3.4. If |A + B| ≤ K|A| (for |B| = |A|), then there exists a set S ⊆ A + B such that
|S| ≥ |A|/2 and |A+B + S| ≤ KO(1)|A|.

To see that the PR Lemma follows from the two claims, note that the hypotheses of the lemma
satisfy the hypotheses of Claim 4.3.4, and so there exists a set S such that |S| ≥ |A|/2 and
|A + B + S| ≤ KO(1)|A|. Now set C = A + B and D = −S; then, |D| = |S| ≥ |A|/2 ≥ |C|/2K,
and |C −D| = |A+B+S| ≤ KO(1)|A| ≤ KO(1)|C|. Application of the last sentence of Claim 4.3.3
then yields |(A− A) + (B − B)| = |C − C| ≤ KO(1)|C| ≤ KO(1)|A|. We can repeat this argument
with A− A and B − B instead of A and B to get that |`A− `A+ `B − `B| ≤ KO(1)|A| for every
constant `. This clearly implies the conclusion of Lemma 4.3.1.

Proof of Claim 4.3.3. Consider the map φ : (C −D)× (C −D)→ G that maps (x1, x2) to x1−x2.
For any element x = c − c′ in C − C, note that φ(c − d, c′ − d) = x for every d ∈ D. So2,
|C − C| ≤ |C−D|

2

|D| .
The second sentence of the claim comes from just plugging in the given bounds.

1Although it is not needed in what follows, the conclusions of the lemma hold true even when |B| = KΘ(1)|A|
rather than |B| = |A|

2We will use this simple counting argument often. In general, whenever we have a map f : X → Y and we can
say that for Z ⊆ Y , every element of Z has at least k elements in its preimage, then it is true that |Z| ≤ |X|

k
. This

is easy to show.
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Proof of Claim 4.3.4. Let S
def
= {s ∈ A + B : there are at least |A|2K representations of s as s =

a′+b′}, the set of “popular sums.” Let N
def
= |A| = |B|. Consider the map λ : (A+B)×(A+B)→ G

that takes (x1, x2) to x1 +x2. Now, for every element x = a+b+s in A+B+S, each representation
of s as a′+ b′ where a′ ∈ A and b′ ∈ B provides a preimage of x; namely, λ(a+ b′, a′+ b) = x. Since
there are at least N/2K representations of every element of S as the sum of an element of A and
an element of B, |A+B + S| ≤ |A+B|2

N/2K ≤ K
O(1)N .

The lower bound on the size of S comes from a Markov-style argument. Suppose there are fewer
than N/2 elements in A+ B which have at least N/2K representations as a+ b for a ∈ A, b ∈ B.
Clearly, any element can have at most N representations. So, the total number of representations
for all elements of A+ B is < N

2 ·N + |A+ B| · N2K ≤
N2

2 + N2

2 = N2; however, this is impossible
because there are a total of exactly N2 pairs (a, b) with a ∈ A, b ∈ B.

4.3.2 The BSG Lemma

Suppose we have a set A such that |A + A| is small. It necessarily follows that there are many
elements in A + A that can be represented in many ways as a1 + a2 where a1, a2 ∈ A. In fact, as
shown in the proof of Claim 4.3.4, if |A+A| ≤ K|A|, there must be at least |A|/2 elements in A+A

which have at least |A|2K representations. In this section, we answer a stronger question. If A+A is
small, does there necessarily exist a large subset B ⊆ A such that each element b of B+B has many
representations of the form b = a1 +a2 where a1, a2 ∈ A? (Note that our previous observation does
not guarantee this.) Roughly speaking, the Balog-Szemerédi-Gowers (BSG) lemma shows that such
a B exists.

Lemma 4.3.5 (BSG Lemma [BS96, Gow98] (“Many Representations Lemma”)). Suppose G is an
abelian group and A ⊆ G. If |A − A| ≤ K|A|, then ∃B ⊆ A such that |B| ≥ K−O(1)|A| and every
element b ∈ B−B has K−O(1)|A|7 representations as b = a1− a2 + a3− a4 + a5− a6 + a7− a8 with
a1, . . . , a8 ∈ A.

Firstly, observe that the lemma immediately implies that |B−B| ≤ KO(1)|A|. This is so, because
the map f : A8 → G defined by f(a1, a2, a3, a4, a5, a6, a7, a8) = a1−a2+a3−a4+a5−a6+a7−a8 maps
at least K−O(1)|A|7 elements to each element of B − B. Hence, |B − B| ≤ |A|8

K−O(1)|A|7 = KO(1)|A|.
Secondly, note that the lemma refers to B−B instead of B+B, contrary to our previous discussion.
However, we can obtain an analogous result for B +B.

Lemma 4.3.6 (BSG Lemma for addition). If |A − A| ≤ K|A|, then ∃B ⊆ A such that |B| ≥
K−O(1)|A| and every element b ∈ B +B has K−O(1)|A|11 representations as a sum of 12 elements
of A ∪ −A.

As discussed in the previous lecture, it is often useful to establish statistical variants of state-
ments in arithmetic combinatorics. To do this, let us view A − A as a distribution, specifically
the one described by the experiment of picking a1 uniformly at random from A, a2 uniformly at
random from A and then outputting a1 − a2. We will call this distribution A − A. Then, the
hypothesis of Lemma 4.3.5 that |A−A| ≤ K|A| can be written as H0(A−A) ≤ log(K|A|), where
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H0(X)
def
= log |supp(X)|. The next lemma instead takes as hypothesis the condition H2(A−A) ≤

log(K|A|), where H2(X)
def
= − log ‖X‖22 = − log

∑
uX(u)2. (Note that ‖X‖22 is also equal to the

collision probability of X, defined as Pru←X,v←X [u = v].)

Corollary 4.3.7. For G an abelian group, let A be a subset of G. Let A−A denote the distribution
obtained by picking a1 uniformly at random from A, a2 uniformly at random from A and outputting
a1 − a2. If H2(A − A) ≤ log(K|A|), then there exists B ⊆ A such that |B| ≥ K−O(1)|A| and
|B −B| ≤ KO(1)|A|.

Note that using Corollary 4.3.2, we can also conclude that |B+B| ≤ KO(1)|A|. Corollary 4.3.7
provides a partial converse to the observation made in the beginning of this subsection that small
|A−A| implies existence of many elements in A−A with many representations. In Corollary 4.3.7,
the condition that H2(A − A) is small is approximately the same as saying that there are many
elements in A−A with lots of representations as a1−a2 with a1, a2 ∈ A. So, roughly, the statement
of Corollary 4.3.7 is that if there are many elements in A−A with many representations, then there
exists a large subset B of A such that |B −B| is small. We cannot necessarily assert that |A−A|
itself is small, because such an assertion would be incorrect. It turns out that there are sets A
such that there many elements in A − A with many representations and yet |A − A| is large. For
example, let A be the union of an arithmetic progression of length N/2 and a geometric progression
of length N/2. In this case, H2(A − A) = log Θ(N), but |A + A| ≥ Ω(N2) due to the geometric
progression.

We next turn to the proofs of the above lemmas and corollary. We will give the proofs of
Lemma 4.3.5 and Lemma 4.3.6 and then, indicate how the proofs need to be changed in order to
obtain Corollary 4.3.7.

Proof of the BSG lemma (Lemma 4.3.5). We begin with a graph-theoretic claim.

Claim 4.3.8 (Comb Lemma). If a graph G has N vertices and average degree at least ρN , then
there exists a subset B of ≥ ρ−O(1)N vertices such that for all u, v ∈ B, there are at least ρO(1)N3

length-4 paths from u to v.

Set N = |A|. Let us see how Claim 4.3.8 implies the BSG Lemma. Define the graph G with
vertex set A. There is an edge between vertices a, e ∈ A if a−e has at least N/(2K) representations
in A−A. As worked out in the proof of Claim 4.3.4, there must be at least N/2 elements in A−A
having more than N/(2K) representations, as |A−A| ≤ K|A|. So, the average degree of the graph G

must be at least 2·(# of edges in G)
N ≥ 2·N

2
· N
2K

N = N
2K . Therefore, we can apply Claim 4.3.8 with ρ = 1

2K

to get a set B of size such that there are at least ρO(1)N3 length-4 paths between any two vertices
in B. Consider two vertices a, e ∈ B and let 〈a, b, c, d, e〉 be a length-4 path between them. Observe
that we can write a−e = (a−b)+(b−c)+(c−d)+(d−e). By definition of G, there must be at least
N/(2K) representations of a−b, b−c, c−d and d−e. Furthermore, there are at least ρO(1)N3 many
length-4 paths between a and e. So, a−e has a total of at least K−O(1)N3 ·(N/(2K))4 ≥ K−O(1)N7

distinct representations of the form a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8.

Proof of the Comb Lemma (Claim 4.3.8). The main idea of the proof is the following. Given a
graph G = (V,E) with average degree at least ρN where N = |V |, we will show the existence
of a set B ⊆ V such that for every vertex u ∈ B, there are many vertices in B that share many
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neighbors with u. So, given two vertices u and v in B, there will be many vertices that share many
common neighbors with both u and v; this directly implies many length-4 paths between u and v.
Let us work out the details.

First, we modify G so that the minimum degree of a vertex in V is ρN/10. We do this by
deleting from V any vertex with degree < ρN/10. Clearly, we remove at most ρN2/10 edges; the
number of vertices remaining in V is at least Ω(ρN) by a Markov-style argument. For convenience,
let us retain the names G = (V,E) for the modified graph.

Next, pick a random vertex x ∈ V and let B′ = Γ(x), the set of neighbors of x. Note that

Ex [|B′|] ≥
9
10
ρN2

N = 9
10ρN . We want to claim now that there are many length-2 paths between many

pairs of vertices in B′. Say vertices a and b are unfriendly if |Γ(a)∩Γ(b)| < ρ2N/200. Let X denote
the number of unfriendly pairs of vertices in B′. For a, b ∈ V , let Xa,b be the indicator variable
that is 1 iff a and b are both in B′ = Γ(x) and are unfriendly with each other. X =

∑
a,b∈V Xa,b.

For any a, b ∈ V ,

E
x

[Xa,b] = Pr
x

[Xa,b = 1] ≤ Pr
x

[a, b ∈ Γ(x)| a and b are unfriendly] ≤ ρ2/200

because for an unfriendly pair, only ρ2N/200 choices of x would lead to both being in Γ(x); so,
Ex [X] ≤ ρ2

200

(
N
2

)
≤ ρ2

400N
2.

Next, we want to extend this observation in order to show that for significantly many a1 ∈ B′,
there are many a2 ∈ B′ such that a1 and a2 are friendly. For this purpose, let S denote the number
of a1 ∈ B′ such that a1 is unfriendly with more than ρ

100N vertices in B′. Then, it follows that
|S| · ρ

100N ≤ X; therefore, Ex [|S|] ≤ 100
ρN

ρ2

400N
2 = ρ

4N . Therefore, Ex [|B′| − |S|] ≥ ( 9
10 −

1
4)ρN ≥

1
2ρN . So, by the averaging principle, there must exist an x such that B

def
= B′ − S is of size at

least 1
2ρN . Furthermore, because all the vertices in S have been removed, B has the property any

vertex in B is unfriendly with at most 1
100ρN other vertices in B.

Now suppose u and v are any two vertices in B. u has at most 1
100ρN vertices in B unfriendly

to it and v has at most 1
100ρN vertices in B unfriendly to it; so, by the union bound, there can be at

most 1
50ρN vertices in B unfriendly to either u or v. Let w be one of the at least (1

2−
1
50)ρN = 12

25ρN
vertices friendly to both u and v. Then, there are at least ρ2N/200 vertices x that are common
neighbors of both u and w, and similarly at least ρ2N/200 vertices y that are common neighbors
of both w and x. Each such choice of w, x, and y defines a path of length-4 between u and v. The
number of such paths is at least 12

25ρN · (ρ
2N/200)2 ≥ ρO(1)N3.

Proof of the Additive BSG Lemma (Lemma 4.3.6). This proof is very similar to the proof of Lemma 4.3.5
above. For this reason, we skip some of the calculations that were already performed above. Again,
we begin with a graph-theoretic claim.

Claim 4.3.9 (Bipartite Comb Lemma). If G = (A,B,E) is a bipartite graph with |A| = |B| = N
and with the average degree at least ρN , then there exist subsets A′ ⊆ A and B′ ⊆ B, each of size
at least K−O(1)N , such that for all u ∈ A and v ∈ B, there are ρO(1)N2 length-3 paths from u to v.

Proof. The main idea of the proof is the following. We will show existence of a set A′ ⊆ A such
that for every vertex a1 ∈ A′, there are many vertices a2 ∈ A′ that share many neighbors with
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a1. Also, we will show existence of another set B′ ∈ B such that every vertex in B′ has lots of
neighbors in A′. By our choice of parameters, for every pair of vertices u ∈ A′ and v ∈ B′, u will
have a lot of length-2 paths to vertices in A′ that are neighbors of v; so there will be many length-3
paths between u and v.

First, we modify G so that the minimum degree of a vertex in A is ρN/10. We do this by
deleting from A any vertex with degree < ρN/10. Clearly, we remove at most ρN2/10 edges; the
number of vertices remaining in A is at least 9

10ρN by a Markov-style argument. The number
of vertices remaining in B is still N . For convenience, let us retain the names A and B for the
modified sets of vertices.

Next, we will define two vertices a and b to be unfriendly if |Γ(a)∩Γ(b)| < ρ3N/200. Proceeding
exactly like in the proof of Claim 4.3.8, we find that there exists a set A′ ⊆ A that is of size at least
1
2ρN such that any vertex in A′ is unfriendly with at most 1

100ρ
2N other vertices in A′.

Next, let B′ be the set of vertices in B that have more than 1
50ρ

2N neighbors in A′. We want
to lower-bound |B′|. To do so, first note that the number of edges between A′ and B is at least
1
10ρN · |A

′| ≥ 1
20ρ

2N2. On the other hand, the number of edges between A′ and B is at most
(N − |B′|) 1

50ρ
2N + |B′|N ≤ 1

50ρ
2N2 + |B′|N . Combining the above two sentences, we get that

|B′| ≥ ( 1
20 −

1
50)ρ2N ≥ 1

50ρ
2N .

Finally, we show that the above A′ and B′ satisfy the claims made in the statement of the
lemma. Consider any a ∈ A′ and d ∈ B′. Now, there must at least 1

50ρ
2N neighbors of d in

A′. At most 1
100ρ

2N of these neighbors could be unfriendly with a; so, there must be at least
1

100ρ
2N neighbors c such that |Γ(a) ∩ Γ(c)| ≥ 1

200ρ
3N . Each such b ∈ Γ(a) ∩ Γ(c) defines a path

〈a, b, c, d〉 between a and d. So, the number of these paths of length 3 between a and d is at least
1

200ρ
3N · 1

100ρ
2N ≥ 10−4ρ5N2.

Claim 4.3.10. If |A + B| ≤ K|A| with |A| = |B| = N , then there exist A′ ⊆ A and B′ ⊆ B with
|A′| ≥ K−O(1)N and |B′| ≥ K−O(1)N such that each element x ∈ A′ + B′ has at least K−O(1)N5

representations as x = a1 − a2 + a3 + b1 − b2 + b3 with a1, a2, a3 ∈ A and b1, b2, b3 ∈ B.

Proof. Define a bipartite graph G with the elements of A on one side and elements of B on the
other. G has an edge between a ∈ A and b ∈ B iff a+ b has at least KN/2 representations. By a
Markov argument, |A+B| ≤ K|A| implies that the degree of G is at least N/(2K). Now, we apply
Claim 4.3.9 with ρ = 1

2K to get subsets A′ ⊆ A and B′ ⊆ B. Now, take any element a+b ∈ A′+B′.
There exist at least K−O(1)N2 choices of b′ ∈ B and a′ ∈ A such that 〈a, b′, a′, b〉 is a path of length
3 in G. Then, we can write:

a+ b = (a+ b′)− (a′ + b′) + (a′ + b)

Each of the three terms above has at least KN/2 representations. So, in all, a + b must have at
least K−O(1)N2 · (KN/2)3 ≥ K−O(1)N5 distinct representations.

Let us show now that Claim 4.3.10 implies3 Lemma 4.3.6. If |A + A| ≤ K|A|, then using
B = A in Claim 4.3.10, there are subsets A′, B′ ⊆ A such that |A′| and |B′| are at least K−O(1)N
and each x ∈ A′ + B′ has at least K−O(1)N5 representations as x = a + b − c − d + e + f with

3In fact, Claim 4.3.10 also implies a weaker form of Lemma 4.3.5 with more terms in the representations. We
chose to present the stronger proof because it was the one presented in class.
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a, b, c, d, e, f ∈ A. Moreover, since B′−A′ is a subset of A−A and so is also smaller than KO(1)|A|
(by Corollary 4.3.2), we can apply Claim 4.3.10 once again (with A = −A′ and B = B′) to find
subsets A′′ ⊆ A′ and B′′ ⊆ B′ such that every element of y ∈ B′′−A′′ has K−O(1)N5 representations
as y = −a+ b+ c− d− e+ f with a, b, c, d, e, f ∈ A.

We claim that every element in A′′ + A′′ has at least K−O(1)N11 representations as a sum of
12 elements from A ∪ −A. Indeed, for every x = a + c in A′′ + A′′, pick a b ∈ B′′. Then, writing
a+ c = (a+ b)− (b− c), we see that x can be represented in K−O(1)N5 ·K−O(1)N5 ·K−O(1)N ≥
K−O(1)N11 ways as x = (a1 + b1 − a2 − b2 + a3 + b3)− (−a4 + b4 + a5 − b5 − a6 + b6).

We now sketch the proof of Corollary 4.3.7. In fact, it is very similar to the proof given above
for Lemma 4.3.5. We define a graph G where there are edges between two vertices a and b iff there
are N/(2K) representations of a − b. Now, we just have to show that the average degree of G is
Θ(N/K) and then the rest is exactly the same as in the proof of Lemma 4.3.5. This is not hard to
show by a Markov-style argument.

4.4 Proof of Lemma 4.2.2

We now turn to the proof of our first main lemma. Intuitively, Lemma 4.2.2 says if A ·A and A+A
are small, then we can also control the size of more complex rational expressions at least for a large
subset B ⊆ A. We will actually prove a seemingly weaker claim.

Lemma 4.4.1. If A ⊆ F satisfies |A ·A| ≤ K|A| and |A+A| ≤ K|A|, then there exists a set B ⊆ A
with |B| ≥ 1

KO(1) |A| but |B ·B +B ·B| ≤ KO(1)|A|.

However, it is not difficult to obtain Lemma 4.2.2 from this statement. First of all, our proof
of the above statement extends straightforwardly to the expression Bk + Bk for any k > 2. The
reader finds this step done carefully in [BW04]. Once we have Bk +Bk, the PR Lemma allows us
to iterate this sum and thus obtain any fixed length polynomial

p(B) = Bk + · · ·+Bk −Bk − · · · −Bk.

Ultimately, we need rational expressions of the form r(B) = p(B)/q(B) where p and q are poly-
nomials as above. But the multiplicative version of PR tells us, if the product of polynomials
p(B)q(B) is small, then so is the rational p(B)/q(B). On the other hand, we can bound the size of
the product p(B)q(B) by the size of a polynomial of the above form of higher degree and greater
length.

4.4.1 A Proof Sketch With Unrealistic Assumptions

Before we come to the actual proof of Lemma 4.4.1, we will sketch the proof using a strongly
idealized (possibly wrong) version of the BSG Lemma. We called this the “Dream BSG” Lemma
during the lecture.

Lemma 4.4.2 (“Dream BSG”). If |A − A| ≤ K|A| then there exists a subset B ⊆ A with |B| ≥
1

KO(1) |A| such that every b ∈ B − B has 1
KO(1) |A| representations as b = a1 − a2 with a1, a2 ∈ A.

Moreover, every b ∈ B +B has 1
KO(1) |A| representations as b = a1 + a2 with a1, a2 ∈ A.
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Proof sketch of Lemma 4.4.1 using “Dream BSG”. Apply the “Dream BSG” Lemma so as to ob-
tain a subset B ⊆ A with |B| ≥ 1

KO(1) |A| such that any b ∈ B −B has 1
KO(1) |A| representations as

a = x− y and every b ∈ B ·B has 1
KO(1) |A| representations as b = x′y′.

Claim 4.4.2.1. |(B −B)B| ≤ KO(1)|A|.

Proof. For every a ∈ B −B, we can write

a = x− y (4.1)

where x, y ∈ A in 1
KO(1) |A| different ways. If we multiply Eq. 4.1 by z ∈ B, we get that az has

1
KO(1) |A| different representations as az = x′ + y′ with x′, y′ ∈ A ·A. Thus,

|(B −B)B| ≤ |A ·A|
2

1
KO(1) |A|

= KO(1)|A|.

Now, let a, b ∈ B ·B where b = y1y2. We have 1
KO(1)N pairs (x1, x2) such that

a− b = x1x2 − y1y2 = (x1 − y1)x2 + y1(x2 − y2).

That is, for each pair (x1, x2) we get a unique representation of a − b in terms of z1 + z2 with
zi ∈ (B −B)B. By our previous claim, this implies

|B ·B −B ·B| ≤ 1
KO(1)

N.

By the PR Lemma, the same is true for B ·B +B ·B.

4.4.2 The Actual Proof

Our actual proof of Lemma 4.4.1 is conceptually very similar to the previous proof sketch. It is
somewhat more cumbersome due to the weaker guarantees of the true BSG Lemmas.

Proof of Lemma 4.2.2. We will first strengthen our assumptions by proving the following claim.

Claim 4.4.2.2. There exists a set A′ ⊆ A with |A′| ≥ 1
KO(1)N such that

(A′ −A′)A′11A′−11 ≤ KO(1)N.

Proof. By Lemma 4.3.5, there is a set A′ ⊆ A of size at least 1
KO(1)N such that every element

b ∈ A′ −A′ has 1
KO(1)N

7 representations as

b = a1 − a2 + a3 − a4 + a5 − a6 + a7 − a8 (4.2)

with ai ∈ A. Multiply Equation 4.2 by an arbitrary x ∈ A11A−11. Thus every element d ∈
(A′ −A′)A′11A′−11 has 1

KO(1)N
7 representations as

d = c1 − c2 + c3 − c4 + c5 − c6 + c7 − c8

with ci ∈ A12A−11. But, |A12A−11| ≤ KO(1)N by the PR Lemma.
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Hence, we may assume without loss of generality

(A−A)A11A−11 ≤ KO(1)N.

Now, apply Lemma 4.3.6 so as to obtain B ⊆ A with |B| ≥ 1
KO(1)N such that every b ∈ B · B

has 1
KO(1)N

11 representations as b = x1x2 · · ·x12 with xi ∈ A ∪A−1.
For every a, b ∈ B · B. We fix b = y1 · · · y12 and vary over the representations a = x1 · · ·x12.

For each such representation of a we obtain a unique representation of a− b as

a− b = x1x2 · · ·x12 − y1 · · · y12

= (x1 − y1)x2x3x4 · · ·x12

+ y1(x2 − y2)x3x4 · · ·x12

+ y1y2(x3 − y3)x4 · · ·x12

...
+ y1y2 · · · y11(x12 − y12).

That is, there are 1
KO(1)N representations of a− b as z1 + z2 + · · ·+ z12 where the each zi is in

a set of size at most |(A−A)A11A−11| ≤ KO(1)N . Thus,

|B ·B −B ·B| ≤ KO(1)N.

An application of the PR Lemma finishes the proof.

4.5 Proof of Lemma 4.2.3

In order to conclude the proof of the Sum-Product Theorem, we need to exhibit a rational expression
r(A) which grows even if A + A is small. In the previous lecture, we already saw such a rational
expression, namely the one from [BW04]. In this lecture, we give an independent (possibly simpler)
proof with a different rational expression. Recall the expression from Lemma 4.2.3,

A

(
A+

AA−AA
A−A

)
.

It is helpful to see expression as the composition of two parts. The tricky part is to show that
set A(A + x) grows compared to A at least for some field element x ∈ F. But, A(A + x) is not
quite yet a rational expression in A. So, we would like to be able to replace x by some rational
term r(A). This is where the part (AA−AA)/(A−A) comes into play.

Proposition 4.5.1. Let F be a prime field. For any A ⊆ F and x ∈ F, if |A(A+ x)| < |A|2, then
x ∈ AA−AA

A−A .

Proof. If |A(A + x)| < |A|2, then we have a, b, c, d ∈ A with a 6= c such that a(b + x) = c(d + x).
Hence, x = ab−cd

a−c .

Clearly, it only remains to prove the following claim.
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Claim 4.5.2. Under the assumptions of Lemma 4.2.3, there exists an x ∈ F such that

|A|1.1 < |A(A+ x)| < |A|2

Proof. Suppose otherwise and let

Λ = {x : |A(A+ x)| = |A|2}.

We will prove a sequence of subclaims which turns out to contradict the fact that we are working
over a field of prime order.

Claim 4.5.2.1.
Λ 6= ∅

Proof. For a random x ∈ F, we are interested in the expected collision probability of A(A + x).
Recall,

cp(A(A+ x)) = Pr
a,b,c,d

[a(b+ x) = c(b+ x)].

We have,

Ex∈F[cp(A(A+ x))] =
1

|F||A|4
∑
x∈F

#{a, b, c, d : a(b+ x) = c(d+ x)}

=
1

|F||A|4
∑
x∈F

#{a, b, c, d : ab− cd = (c− a)x} (4.3)

Observe, if a quadruple (a, b, c, d) has a− c 6= 0, then there is precisely one x ∈ F that satisfies
ab− cd = (c−a)x. We have |A|4−|A|3 such tuples. On the other hand, if ab− cd = a− c = 0, then
every x satisfies this equation. But in this case, there are less than 2|A|2 such quadruples. Hence,
we have the upper bound∑

x∈F
#{a, b, c, d : ab− cd = (c− a)x} ≤ |A|4 − |A|3 + 2|F||A|2 (4.4)

A simple calculation shows, if the field F is large enough, Equation 4.3 and Equation 4.4 imply

Ex∈F[cp(A(A+ x))] < |A|−1.1.

But, by our assumption we ruled out any x ∈ F with

|A|−2 < cp(A(A+ x)) < |A|−1.1.

Hence, there exists an x with cp(A(A+ x)) = |A|−2 which is equivalent to

|A(A+ x)| = |A|2.
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Claim 4.5.2.2. There exists an element d 6= 0 such that

Λ + d ⊆ Λ.

Proof. We want to prove there exists an element d 6= 0 such that for all x ∈ Λ, we have d+ x ∈ Λ.
Notice, by our assumption it is sufficient to show that |A(A+ d+ x)| > |A|1.1 for all x ∈ Λ.

Let x ∈ Λ. Then, the mapping (a, b) 7→ a(b + x) is collision-free on A × A. In particular, the
mapping is collision free on the domain A×A′ with A′ = A∩ (A+ d), since A′ ⊆ A. Thus for all d,

|A(A+ d+ x)| ≥ |A((A ∩ (A+ d)) + x)| ≥ |A| · |A ∩ (A+ d)|.

So, this means we are done if there is an element d 6= 0 such that |A ∩ (A+ d)| > |A|0.1. But,

A ∩ (A+ d) = {a | ∃b : a− b = d}.

Hence, ∑
d∈(A−A)\{0}

|A ∩ (A+ d)| = |A|2 − |A|.

Thus, there exists d 6= 0 with

|A ∩ (A+ d)| ≥ |A|2 − |A|
|A−A| − 1

>
|A| − 1
|A|0.1

.

If |A| > 2, we have (|A| − 1)/|A|0.1 > |A|0.1 as desired. The remaining cases of |A| ≤ 2 can be
checked separately.

Now, let x ∈ Λ as given by Claim 4.5.2.1. By Claim 4.5.2.2, there exists d 6= 0 such that
x + d ∈ Λ. Indeed, x + kd ∈ Λ for any k ≥ 0. On the other hand, F is of prime order. So, there
will be a k ≥ 0 such that x+ kd = 0. But this is a contradiction, since

|A(A+ 0)| = |A ·A| < |A|2.
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=
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Proof of Szemerédi’s Regularity Lemma

Luca Trevisan

Scribe(s): Wolfgang Mulzer

Summary: We give a proof of Szemerédi’s Regularity Lemma [Sze78], which states
essentially that any graph can be partitioned into a constant number of pieces such that
the distribution of the edges between almost any pair of pieces is pseudo-random.

5.1 Szemerédi’s Regularity Lemma

Previously we encountered Szemerédi’s Regularity Lemma and saw how it can be used to prove
Szemerédi’s theorem for k = 3. Now we are going to prove the Regularity Lemma.

Recall that a pair (U,W ) of subsets of vertices of a graph G = (V,E) is ε-regular if the number
of edges between any pair of large enough subsets of U and V is ε-close to what we would expect
if the edges between them were chosen independently with the same probability. More precisely:

Definition 5.1.1. Let ε > 0, G = (V,E) be a graph, and U,W ⊆ V . The pair (U,W ) is called
ε-regular, if for all S ⊆ U and T ⊆W with |S| ≥ ε|U | and |T | ≥ ε|W | we have

|d(S, T )− d(U,W )| ≤ ε,

where d(A,B) denotes the edge density

d(A,B)
def
=
|E(A,B)|
|A||B|

between A,B ⊆ V .

With this definition in mind, we can give the precise statement of the Regularity Lemma:

Theorem 5.1.2. For every ε > 0 and t ∈ N there is a constant k(ε, t) such that for every graph
G = (V,E) with at least t vertices there is a partition (V1, V2, . . . , Vk) of the vertices with t ≤ k ≤
k(ε, t) and |V1| = |V2| = · · · = |Vk−1| ≥ |Vk| such that at least (1 − ε)

(
k
2

)
of the pairs (Vi, Vj) are

ε-regular.

35
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The Lemma states that any graph can essentially be partitioned into a constant number of
pieces such that the distribution of the edges between almost any pair of pieces is pseudo-random,
that is, ε-regular. Note that the Lemma is only meaningful for dense graphs, because for sparse
graphs the density of the edges between the pieces of the partition tends to 0.

Note also that we make no statement about the edges inside each piece of the partition. However,
we can specify the minimum size t of of the partition, which gives us control over the fraction of
edges between the pieces.

Furthermore, choosing a random partition of k pieces will not do the job. Indeed, if we take a
large bipartite graph and randomly partition its vertices into k pieces, then every piece will contain
many vertices from both sides of the bipartition, and hence no pair of pieces will be ε-regular,
because we can find large subsets with no edges between them.

Considering this counterexample and the many deep consequences of the Regularity Lemma, we
expect the proof to be quite complicated and involved. However, a straightforward greedy method
along with a clever choice of potential function yields the desired result, as we will now see.

Proof. The partition is generated by the following greedy method:

Algorithm 5.1.3 (Generating an ε-regular partition).

1. Let P = (V1, V2, . . . , Vk) be an arbitrary partition of V into k pieces with
|V1| = · · · = |Vk−1| ≥ |Vk|, where k = max(1

ε , t).

2. If P fulfills the requirements of the theorem, then STOP.

Otherwise for at least ε
(
k
2

)
pairs (Vi, Vj) we get subsets Sij ⊆ Vi,

Sji ⊆ Vj such that both |Sij | ≥ ε|Vi|, |Sji| ≥ ε|Vj | and we have
|d(Sij , Sji)− d(Vi, Vj)| ≥ ε.

3. Subdivide each Vi into at most 2k−1 sets according to the σ-algebra
generated by the sets Sij ⊆ Vi (see Figure 5.1). Call the refined partition
P ′. We have |P ′| ≤ k2k−1.

4. Subdivide the pieces of P ′ into pieces of size n/
(
k2k−1

)2 and (possibly)
a remainder of smaller size. Recombine the remainder pieces arbitrarily
into pieces of size n/

(
k2k−1

)2 and (possibly) one piece of smaller size.
Denote the resulting partition by P, set k := |P| and go to Step 2.

We need to show that Algorithm 5.1.3 stops after a constant number of steps. In order to measure
the progress we make in each step, we define a potential function that represents the regularity of
the current partition.

More precisely, let P = (V1, V2, . . . , Vk) be a partition of V . For each A,B ⊆ V , define a random

variable X[A,B] as follows: Let v1, v2 ←R V . Then X[A,B]
def
= d(A,B)2 if v1 ∈ A and v2 ∈ B, and

X[A,B]
def
= 0, otherwise. Now we define the potential function Φ(P):

Φ(P)
def
=

∑
1≤i<j≤|P|

E[X[Vi, Vj ]] =
∑

1≤i<j≤|P|

|Vi||Vj |
|V |2

d(Vi, Vj)2.
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Figure 5.1: Splitting the piece Vi according to the σ-algebra generated by Si1, Si2, Si3.

The potential function can be interpreted as the variance of the random variable Z which is
defined by taking v1, v2 ←R V and letting Z

def
= d(Vi, Vj) if v1 ∈ Vi and v2 ∈ Vj (and Z

def
= 0 if

v1, v2 are in the same piece of the partition). Since all the d(Vi, Vj) are at most 1, it follows that
Φ(P) ≤ 1 for any partition P.

Next, we show that Φ(P ′) ≥ Φ(P) for any refinement P ′ of P. It suffices to consider refinements
that split a piece Vi into two pieces S, Vi\S. In this case, we have

Φ(P ′)− Φ(P) = E[X[S, Vi\S]] +
∑
j 6=i

(E[X[S, Vj ]] + E[X[Vi\S, Vj ]]− E[X[Vi, Vj ]]) .

Now if we define a random variable Yj by picking v ←R Vi and setting Yj
def
= d(S, Vj) if v ∈ S and

Yj
def
= (Vi\S, Vj) if v ∈ Vi\S, we have

E[X[Vi, Vj ]] =
|Vi||Vj |
|V |2

E[Yj ]2 ≤
|Vi||Vj |
|V |2

E[Y 2
j ] = E[X[S, Vj ]] + E[X[Vi\S, Vj ]],

since for any random variable W we have E[W ]2 ≤ E[W 2]. Hence, refining the partition can only
increase the potential function.

Now we show that splitting a non-regular pair (Vi, Vj) increases the potential function signifi-
cantly. Let S ⊆ Vi, T ⊆ Vj be such that |S| ≥ ε|Vi|, |T | ≥ ε|Vj | and |d(S, T ) − d(Vi, Vj)| ≥ ε. Let
P ′ be the partition resulting from P by splitting (Vi, Vj) into (S, Vi\S, T, Vj\T ). We have

Φ(P ′)− Φ(P) ≥ E[X[S, T ]] + E[X[S, Vj\T ]] + E[X[Vi\S, T ]] + E[X[Vi\S, Vj\T ]]− E[X[Vi, Vj ]],

since by the above calculation the contribution of all other pairs involving Vi or Vj is non-negative.

Now define a random variable Y by picking v1 ←R Vi, v2 ←R Vj and letting Y
def
= d(A,B) if v1 ∈ A,
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v2 ∈ B, for A ∈ (S, Vi\S), B ∈ (T, Vj\T ). We have E[Y ] = d(Vi, Vj), and with probability at least
ε2, Y deviates from its mean by more than ε. Hence, we have

Var[Y ] = E[(Y − E[Y ])2] ≥ ε2 · ε2.

That means

E[X[S, T ]] + E[X[S, Vj\T ]] + E[X[Vi\S, T ]] + E[X[Vi\S, Vj\T ]] =
|Vi||Vj |
|V |2

E[Y 2]

≥ |Vi||Vj |
|V |2

(
E[Y ]2 + ε4

)
= E[X[Vi, Vj ]] +

|Vi||Vj |
|V |2

ε4,

so the potential function increases by at least ε4|Vi||Vj |/|V |2.
Now let us consider the partition P ′ obtained by refining P in Step 3. We have

Φ(P ′)− Φ(P) ≥
∑

1≤i<j≤|P|
(Vi,Vj) not regular

 ∑
A,B∈P ′

A⊆Vi,B⊆Vj ‘

E[X[A,B]]− E[Vi, Vj ]



≥
∑

1≤i<j≤|P|
(Vi,Vj) not regular

 ∑
A∈(Sij ,Vi\Sij)
B∈(Sji,Vj\Sji)

E[X[A,B]]− E[Vi, Vj ]


≥

∑
1≤i<j≤|P|

(Vi,Vj) not regular

|Vi||Vj |
|V |2

ε4

≥ Ω
(
ε5
)
,

since P ′ refines every partition which splits a non-regular pair (Vi, Vj) according to the witness sets
Sij , Sji, and since at least an ε-fraction of all pairs is non-regular.

In Step 4, we recombine some sets of the partition, and hence the potential function can decrease.
However, the total number of elements in the remainder sets is at most n/k2k−1. Therefore, the
total contribution of the remainder sets to the potential function is at most O(1/k2k−1), which is
negligible if we choose the initial k large enough.

Hence, in each iteration, the potential function increases by Ω
(
ε5
)
, and since the potential is

bounded by 1, after O
(
1/ε5

)
steps Algorithm 5.1.3 terminates. In each step the size of the partition

grows exponentially, and hence letting k(ε, t) be a tower of height O(1/ε5) proves the Theorem.
Gowers proved that this tower dependence on ε is necessary [Gow97].

The proof of the Regularity Lemma given above is not quite constructive, because it does not
tell us how to find the witness sets Sij efficiently. However, there exists a polynomial time algorithm
which computes the partition promised by the Regularity Lemma [ADL+94].
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Summary: We will look at Roth’s proof of Szemeredi’s theorem for the case k = 3.
We first prove the theorem for subsets of Fnp instead of {1, 2, . . . , N} as it is cleaner and
illustrates the idea of the proof. Then we prove the theorem for integers, and finally
look at a construction of Behrend of an AP-free subset of [n] of size n

2Θ(
√

logn)
.

6.1 Introduction

Szemeredi’s theorem states that any subset of {1, 2, . . . , N} of positive density contains arbitrarily
long arithmetic progressions. More formally, given a positive integer k and δ > 0, there exists an
N0 such that for all N > N0, any S ⊆ [N ] with |S| > δN contains a k-term AP.

In this lecture, we will prove the result for k = 3, using techniques from Fourier analysis. The
proof presented here is due to Roth. To illustrate the idea of the proof, we will first prove the result
over Fnp instead of {1, 2, . . . , N}.

6.2 Roth’s theorem over Fnp
Suppose p is a fixed prime. We will prove the following ‘Fnp analogue’ of the theorem.

Theorem 6.2.1. Suppose δ > 0. Given a set A ⊆ Fnp , with |A| ≥ δ|Fnp |, there exist a, b ∈ Fnp such
that a, a+ b, a+ 2b ∈ A.

In fact, we prove something stronger – that there exists a constant cp depending only on p

such that the conclusion holds whenever |A| > cppn

n . Consider the characteristic function of A. We
abuse notation a little and denote it also by A (which maps Fnp → C). So A(x) = 1 if x ∈ A and 0
otherwise.

39
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6.2.1 Outline of the Proof

The idea now is to analyze the Fourier coefficients of the function A. The rough outline of the proof
is the following. We prove that either the set A has ‘lots’ of APs (in the sense that given random
a, b ∈ Fnp , the probability that a, a+ b, a+ 2b are in A is positive), or that A has a density at least
δ + δ2

4 on an affine subspace of Fnp of dimension (n− 1).
Now if the second case happens, we look only at points on that subspace, and since it’s a

hyperplane, arithmetic progressions map back to arithmetic progressions so it suffices to prove that
3-APs exist in this set of points. So repeating the process, we either find several 3-APs or move to
a still smaller space (with the given set of points having an even higher density), and so on. The
density however obviously cannot keep growing (it is, afterall, bounded by 1) so this process has
to stop.

In one ‘step’, the density increases from δ → δ + δ2

4 . This gives an obvious bound of O
(

1
δ2

)
on

the number of steps. However a slightly more careful argument shows that we need at most O
(

1
δ

)
steps. Note that in 4

δ steps the density increases from δ to at least δ(1+ δ
4)

4
δ > 2δ. And hence in the

next 4
2δ = 2

δ steps the density increases from 2δ to 4δ, and so on. Thus in 4
δ (1+ 1

2 + 1
4 + · · ·+ 1

2t ) <
8
δ

steps the density increases to 1 (for appropriate t).

6.2.2 Definitions

We start with a few definitions required for the proof. Given two functions f, g : Fnp → C, define
the inner product as 〈f, g〉 = Ex[f(x)g(x)]. We now construct an orthonormal basis for the space
of functions f : Fnp → C. Note for now that this space has dimension pn.

Given a point t ∈ Fnp , define χt : Fnp → C as χt(x) = ωt1x1+t2x2+···+tnxn = ωt.x, where ω = e2iπ/p,
a primitive pth root of unity. Note that 〈χt, χt〉 = 1 for all t ∈ Fnp . Further if s, t ∈ Fnp and s 6= t,
then

〈χs, χt〉 = Ex[ω(s−t).x] =
∏
i

Exi [ω
(si−ti)xi ] = 0

The last equality is because (si − ti) 6= 0 for some i, and for this i we have Exi [ω(si−ti)xi ] = 0.
Thus the set {χt : t ∈ Fnp} is an orthonormal set of functions. Since there are pn of them it is an
orthonormal basis for functions f : Fnp → C.

6.2.3 The Proof

We now formally state and prove what was stated in the outline above.

Theorem 6.2.2. Suppose A ⊆ Fnp has size δ|Fnp |. Then one of the following holds

1. There are at least δ3

2 |F
n
p |2 − |A| arithmetic progressions in A.

2. There exists a subspace H of Fnp of dimension (n− 1) such that the density of A on H is at
least δ + δ2

4 .

Proof. Writing the function A in the basis defined above, we have

A(x) =
∑
t∈Fnp

Â(t)χt(x)
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where Â(t) = Ex[A(x)χt(x)]. Thus by the assumption on the size of the set A, we have Â(0) = δ.
Also, we have

∑
t |Â(t)|2 = 〈A,A〉 = Ex[|A(x)|2] = δ, the last equality holding because A is a 0− 1

function.
We will now consider the quantity Ex,y[A(x)A(x + y)A(x + y + y)] (denoted E from now).

Clearly, this denotes the fraction of the total possible ‘arithmetic progressions’ that are contained
in A.

E = Ex,y
[(∑

a

Â(a)χa(x)
)(∑

b

Â(b)χb(x+ y)
)(∑

c

Â(c)χc(x+ y + y)
)]

=
∑
a,b,c

Â(a)Â(b)Â(c)Ex,y
[
χa(x)χb(x+ y)χc(x+ 2y)

]
=

∑
a,b,c

Â(a)Â(b)Â(c)Ex
[
χa(x)χb(x)χc(x)

]
Ey
[
χb(y)χc(y)χc(y)

]
=

∑
a,b,c

Â(a)Â(b)Â(c)Ex
[
χa+b+c(x)

]
Ey
[
χb+2c(y)

]
In between, we used the fact that the χ’s are characters, i.e., χt(x + y) = χt(x)χt(y). The expec-
tations over x, y are both non-zero iff a+ b+ c = 0 and b+ 2c = 0, i.e., c = a and b = −2a. And in
this case the expectations are 1. Thus

E =
∑
a

Â(a)2Â(−2a)

= δ3 +
∑
a6=0

Â(a)2Â(−2a)

Now define M = maxa6=0 |Â(a)|. By the above, we have E = δ3 +
∑

a6=0 Â(a)2Â(−2a) ≥ δ3 −
M
∑

a |Â(a)|2 = δ3 − δM .
If M ≤ δ2

2 , we have E ≥ δ3/2, thus a constant fraction of all the possible AP’s are actually in
the set A. So the number of 3-APs in A is at least δ3

2 |F
n
p |2− |A| (the |A| is due to the trivial APs),

and we are done.
Thus suppose M > δ2

2 , so there exists an a 6= 0 such that |Â(a)| = |Ex
[
A(x)ω−a.x

]
| > δ2

2 .The
aim in this case is to show that there exists a c ∈ Fp such that E{x|a.x=c}[A(x)] > δ + δ2

4 . We have
|Ex[A(x)ω−a.x]| ≥ δ2

2 . Observe that if a 6= 0, a.x is uniformly distributed in {0, 1, . . . , (p − 1)}.
Thus we have∣∣∣1

p
E{x|a.x=0}[A(x)ω0] +

1
p

E{x|a.x=1}[A(x)ω1] + · · ·+ 1
p

E{x|a.x=(p−1)}[A(x)ωp−1]
∣∣∣ > δ2

2

Also if we put B(x) = A(x) − δ, so that Ex[B(x)] = 0, we have B̂(a) = Â(a) for a 6= 0, thus the
above equation holds if A is replaced by B. Thus, using triangle inequality, we get

1
p

∣∣∣E{x|a.x=0}[B(x)]
∣∣∣+

1
p

∣∣∣E{x|a.x=1}[B(x)]
∣∣∣+ · · ·+ 1

p

∣∣∣E{x|a.x=(p−1)}[B(x)]
∣∣∣ > δ2

2
(6.1)
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If we denote E{x|a.x=i}[B(x)] by αi, then since Ex[B(x)] = 0, we have α0 + α1 + · · · + αp−1 = 0.
Eqn.6.1 says that 1

p(|α0| + |α1| + · · · + |αp−1|) > δ2

2 . These together imply that there exists an i

with (αi + |αi|) > δ2

2 . Thus for this i, αi is positive and is > δ2/4.
Thus there exists a c such that E{x|a.x=c}A(x) > δ + δ2

4 . This completes the proof.

Till now we had assumed that |Fnp | is ‘large enough’ (say we denote this by N). One can see
that for the quantity in condition (1) of Theorem 6.2.2 to be positive we need N > 2

δ2 . Further
the dimension of the space must be at least 8

δ . Thus it suffices to have N(= pn) > p
8
δ , equivalently

|A| > 8
log p(pn/n), as we claimed earlier.

6.3 Roth’s theorem over Z

In this section we will prove Roth’s theorem. In particular,

Theorem 6.3.1. Suppose δ > 0. Then there is an absolute constant C such that for all N > 22
C
δ ,

any A ⊆ {0, 1, . . . , N−1} of size |A| = δN necessarily contains a non-trivial arithmetic progression
of length 3.

6.3.1 Outline and Definitions

The proof closely resembles the proof of Roth’s theorem over Fnp . We show an analogous result
– either the set A has lots of APs of length 3 or there exists an arithmetic progression P of size
Ω(
√
N) such that A has a density of at least δ+ δ2

64 on P . We study the problem initially over ZN ,
performing Fourier analysis on this group, and later see how we can move to Z.

As before, if the first case above does not occur, we turn our attention to the subset A′ = A∩P
of A and iterate this argument. This can be done because as before, APs map back to APs in the
original set. Thus we do this process until we either find several 3-APs or until the density of A′

on an AP is > 1 (which is not possible). Notice that in this case arithmetic progressions in some
sense play the role of hyperplanes.

For clarity, we will redefine some of the terms we will use for the ZN case. Given two functions
f, g : ZN → C, define the inner product as 〈f, g〉 = Ex[f(x)g(x)]. The space of functions f : ZN → C
clearly has dimension N . For k ∈ ZN , consider the function χk : ZN → C defined by χk(x) = ωkx,
where ω = e

2iπ
k , a primitive Nth root of unity.

As before it’s easy to see that these functions form an orthonormal basis for functions f : ZN →
C. So any such f can be written as f(x) =

∑N−1
k=0 f̂(k)χk(x), where f̂(k) = Ex[f(x)χk(x)]. We will

call f̂(k) the kth Fourier coefficient of f . Note also that clearly |f̂(k)| ≤ Ex|f(x)|
Another simple identity which will be quite useful is that f̂(k)ĝ(k) is the Fourier transform of

the function G(x) = Ey[f(y)g(y − x)], and hence

|f̂(k)||ĝ(k)| ≤ Ex|Ey[f(y)g(y − x)]| (6.2)

This equality has the following crucial consequence. Suppose A(x) and B(x) are the characteristic
functions of two sets A,B ⊆ ZN (abusing notation as before). Then if |Â(k)| and |B̂(k)| are both
‘large’, then there must exist an x such that |Ey[f(y)g(y − x)]| is ‘large’. But this quantity is
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precisely the cardinality of A ∩ (B + x). So this means that if A and B have a common ‘large’
Fourier coefficient, A has a ‘large’ intersection with a translate of B.

Later on we will prove that for any r, there exists an AP of size Ω(
√
N) which has a ‘large’ rth

Fourier coefficient. This along with the above (and with suitable meanings for ‘large’) will imply
the main result.

6.3.2 The Proof

As outlined above, we will prove the following

Theorem 6.3.2. Let A ⊆ {0, 1, . . . , N} with |A| = δN and N ≥ 8
δ2 . Then one of the following

holds

1. A contains at least δ3N2 − |A| non-trivial APs of length 3.

2. There exists an arithmetic progression P of length |P | > 1
256δ

2
√
N such that A has a density

at least δ + δ2/64 on P .

We first consider this problem over ZN . As before, A is the characteristic function of set A
and we see that Â(0) = δ and

∑
t |Â(k)|2 = δ. Again, we consider the quantity E = Ex,y[A(x)(x+

y)A(x+ y + y)], which signifies the fraction of total possible length-3 progressions (over ZN ) in A.
As in the Fnp case,

E = Ex,yA(x)A(x+ y)A(x+ y + y) =
N−1∑
k=0

Â(k)2Â(−2k)

= δ3 +
N−1∑
k=1

Â(k)2Â(−2k)

Define M = maxk 6=0 |Â(k)|. We have,

E = δ3 +
∑
k 6=0

Â(k)2Â(−2k)

≥ δ3 −M
∑
k 6=0

Â(k)2 = δ3 − δM

Case 1: M < δ2

8

As before, if M < δ2/2, E ≥ δ3

2 so a constant fraction of all the possible APs in ZN are in
set A (including the trivial ones). However we need to count the number of APs in Z instead
of APs in ZN . If x, x + y + y ∈ A ∩ [N/3, 2N/3), then x, x + y, x + y + y are also APs in Z.
Hence, the following proposition follows easily by the application of Cauchy-Schwarz inequality
and Plancherel’s identity.

Proposition 6.3.3. If M = maxk 6=0 |Â(k)| < δ2

8 , and if |A ∩ [N3 ,
2N
3 )| ≥ δN

4 , then E ≥ δ3

32 .
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However, it is to be noted that this includes δN trivial length-3 APs, and since N ≥ 8
δ2 , there

exists non-trivial length-3 APs in this case.
Further, if |A∩[N/3, 2N/3)| < δN

4 , then either |A∩[0, N/3)| or |A∩[2N/3, N)| ≥ 9δ
8 (N3 ). Hence,

in this case, there is an AP (over Z) P of length |P | ≥ N/3 such that |A ∩ P | ≥ (δ + δ
8)|P |.

Case 2: M ≥ δ2/8

We show in this case that A has increased density on an AP of large size. We prove this by
finding a long arithmetic progression P whose fourier transform is large at the some k where the
fourier transform of A is also large, so that A has increased density on a translate of P .

Lemma 6.3.4. For any k such that 1 ≤ k ≤ N − 1, there exists an arithmetic progression P1 of
length ≥

√
N/4 and common difference d such that |P̂1(k)| ≥ |P1|

2N and |P1|d < N .

Proof. Given k, partition [0, N−1]2 into d
√
N − 1e2 equal squares. Consider the points {(0, 0), (1, k), . . . , (N−

1, (N − 1)k)}. By pigeon hole principle, we see that there exist l,m ∈ [0, N − 1], with l < m, such
that d = m − l ≤

√
N and kd ≤

√
N (mod N). We now claim that the required arithmetic

progression P1 = {. . . ,−2d, d, 0, d, 2d, . . .} with length |P1| = b
√
N/πc.

Now |P̂1(k) − |P1|
N | ≤ |Ex[P1(x)(e−

2iπ
N
xk − 1)]. Now for x ∈ P1, we have 2π

N xk ≤
2π√
N
t ≤ 1.

Bounding the segment length by the arc length, we get |P̂1(k) − |P1|
N | ≤

|P1|
2N , thus proving the

result.

We now show that the given set has a higher density over a translate of one of the APs con-
structed above.

Lemma 6.3.5. Suppose |Â(k)| ≥ ε for some k ∈ ZN . Let P an arithmetic progression in ZN such
that P̂ (k) ≥ |P |2N . Then there exists an x such that |A ∩ (P + x)| ≥ (δ + ε

4)|P | (i.e., it has a higher
density over the progression).

Proof. As before, define B(x) = A(x) − δ. We have B̂(0) = 0 and B̂(k) = Â(k) for k 6= 0. Now
note that

|A ∩ (P + x)| ≥ (δ +
ε

4
)|P | ⇐⇒ Ey[B(y)P (y − x)] ≥ ε

4N
|P | (6.3)

Thus it suffices to prove that there exists x such that Ey[B(y)P (y − x)] ≥ ε
4N |P |.

Let G(x) = Ey[B(y)P (y − x)]. Using Eqn.6.2, we get

Ex|G(x)| ≥ |Ĝ(k)| ≥ ε

2N
|P |

Since G(x) has a mean value of 0,

Ex[|G(x)|+G(x)] ≥ ε

2N
|P |

Therefore there exists an x such that Ey[B(y)P (y − x)] ≥ ε
4N |P |, as desired.
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From the above lemmas, and since M ≥ δ2/8, we have an arithmetic progression P ′ on ZN of
length ≥

√
N/4 such that|A ∩ P ′| ≥ (δ + δ2/32)|P ′|. We now need to construct a long arithmetic

progression P over Z from P ′, with increased density of A (compared to [0, N − 1]).
We know that P ′ has a common difference d such that d|P ′| < N and hence it can be split into
two arithmetic progressions P1 and P2 in Z. Let |P1| ≤ |P2|. If |P1| ≤ δ2

64 |P
′|, then |A ∩ P2| ≥

(δ+ δ2/32)|P ′|− |P1| ≥ (δ+ δ2/64)|P ′| (P = P2 here). Else, A has density ≥ (δ+ δ2/64) in at least
one of P1 or P2 (this being the required P ). This completes the proof of Theorem 6.3.2.

To complete the proof of Roth’s theorem, we might have to consider C
δ ‘steps’ to get to a density

bigger than 1 (thus obtaining the contradiction). Thus we need N to be such that N ( 1
2

)C/δ is at
least a constant, or equivalently, δ > C′

log logN .

6.4 Behrend’s Construction

We now show the construction of an AP-free subset of [n] of size Ω(n1−ε) for all ε > 0. The
construction is due to Behrend (1940’s and is still unbeaten).

Theorem 6.4.1. (Behrend) There exists an AP-free subset of [n] of size at least n
2c
√

logn
, for some

absolute constant c.

Proof. Consider points in Rd such that x2
1 + · · · + x2

d = m and 0 ≤ xi ≤ k. There exists some
m ≤ dk2 for which there are at least kd/dk2 solutions. Fix this as the choice of m and call the set
of points S.

Now we consider a natural encoding of a point (x1, x2, . . . , xd) into Z. Each of the coordinates
is at most k. Thus look at f : (x1, . . . , xd) → x1 + (2k + 1)x2 + · · · + (2k + 1)d−1xd. Now if
f(x) + f(y) = 2f(z), we must have x + y = 2z, which does not happen for the chosen points as
they lie on a sphere.

Thus {f(x) : x ∈ S} is a 3-AP-free set of kd/dk2 integers each at most (2k+ 1)d. Given n, pick
d =
√

log n, (2k + 1) = 2
√

logn, then kd/dk2 = n/2Θ(
√

logn) which is what we wanted.
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7
Gowers Uniformity Norms and Sketch of Gowers’ proof of

Szemerédi’s Theorem
Luca Trevisan

Scribe(s): Indraneel Mukherjee, David Steurer

Summary: We give a sketch of Gowers’ proof of Szemerédi’s theorem using the Gowers
Uniformity Norms for the case k > 3.

7.1 Introduction

Szemerédi’s theorem states that any subset A of a cyclic group ZN of prime order contains an
arithmetic progression of length k, as long as the density of A in ZN is at least δN,k, where
δN,k = o(1) for fixed k and N → ∞. The theorem implies that a set A ⊆ Z of positive density in
Z contains arbitrarily long arithmetic progressions. Szemerédi’s theorem has also been generalized
to arbitrary finite additive groups.

Randomness vs structure. A common theme in the proofs of Szemerédi’s theorem is the
dichotomy between randomness and structure. The main step in Gowers’ proof, for example, is to
show that every subset A of ZN satisfies at least one of the following two conditions:

C1 The set A contains, up to constant factors, as many arithmetic progressions of length k as a
randomly chosen set of the same density as A.

C2 There exists an arithmetic progression P ⊆ ZN of length NΩ(1) − 2δ
−O(1)

such that A has
significantly higher density in P than ZN , specifically δ′ > δ + δO(1), where δ′ = |A ∩ P |/|P |
and δ = |A|/N .

Assuming that every set satisfies C1 or C2, one can show Szemerédi’s theorem by a simple induction.
The resulting quantitive bound on δN,k would be δN,k = (log logN)−Ωk(1).

We say that a set is k-pseudorandom if it satisfies condition C1 for arithmetic progressions of
length k.

47
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Fourier-analytic Approach. Gowers’ approach is inspired by Roth’s Fourier-analytic proof of
Szemerédi’s theorem for k = 3 (Roth’s theorem). For a subset A of a cyclic group ZN of prime
order, let Â : ZN → C denote the Fourier transform of the characteristic function 1A of A. Further,
let δ = Â(0) be the density of A in ZN . We say that a set A is linearly uniform if |Â(x)| < cδ2 for
all x 6= 0. The two main steps of Roth’s proof are as follows.

• Uniformity implies pseudorandomness: If the setA is linearly uniform then it is 3-pseudorandom.

• Non-uniformity implies density increment: If A is not linearly uniform, then A is significantly
denser in an arithmetic progression of ZN with parameters as in C2.

In Roth’s proof, linear uniformity is used to distinguish between sets that are 3-pseudorandom and
sets that allow a density increment argument.

In Section 7.2, we will see that the first step of Roth’s proof cannot be carried out for k > 3,
that is, we show that a linearly uniform set need not be k-pseudorandom for k > 3. This example
shows that if we want to follow the structure of Roth’s proof to show Szemerédi’s theorem for k > 3,
we need a new notion of uniformity that allows us to distinguish between k-pseudorandom sets and
sets that allow a density increment argument.

Gowers Uniformity. One of the main innovations of Gowers’ proof of Szemerédi’s theorem are
the Gowers uniformity norms Ud(f) for functions f : ZN → C and integers d > 0. We will define
these norms in Section 7.3. We say that a set A ⊆ ZN is k-uniform if Uk−1(1A − δ) < ckδ

k.
With this notion of uniformity, Gowers’ proof of Szemerédi’s theorem has the same structure as
the Fourier-analytic proof of Roth’s theorem.

• Uniformity implies pseudorandomness: If A is k-uniform then it is k-pseudorandom.

• Non-uniformity implies density increment: If A is not k-uniform, then A is significantly denser
in an arithmetic progression P of ZN with parameters as in C2.

Organization. In these notes, we present a sketch of Gowers’ proof of Szemerédi’s theorem. We
will focus on the case of arithmetic progressions of length 4 and the ambient group Fnp for a fixed
prime p > 3.

In Section 7.4, we discuss the first step of Gowers’ proof, that uniformity implies pseudoran-
domness. Most proofs in this section directly translate to the case of k > 4 and arbitrary ambient
groups.

In Section 7.5, we show the second step of Gowers’ proof, that non-uniformity implies density
increment. This step is considerably more difficult than the first one. The presented proof assumes
a strong inverse theorem for the Gowers uniformity norm. A corresponding theorem for k > 4 is
not known. The presented proof also exploits the structure of the ambient group Fnp . In this sense,
the discussion in Section 7.5 does not easily generalize to larger k or arbitrary ambient groups.

7.2 Linear Uniformity vs Pseudorandomness

In this section, we show that linearly uniform sets need not be k-pseudorandom for k ≥ 4.
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Lemma 7.2.1. The quadratic surface

A =
{
x ∈ Fnp |

∑
i≤n/2

xixn/2+i = 0 ∈ Fp
}

is linearly uniform, but contains a Θ(δ3) fraction of all arithmetic progressions of length k (k-APs)
of Fnp for every k ≥ 3, where δ ≈ 1/p is the density of A. In particular, A is not k-pseudorandom
for k ≥ 4.

Proof. Suppose we can show that A is linearly uniform and has density δ ≈ 1/p. Then Roth’s the-
orem shows that A contains Θ(δ3|Fnp |2) arithmetic progressions of length 3. Since A is a quadratic
surface, every line of Fnp either intersects A in at most 2 points1 or is completely contained in A.
Hence every 3-AP contained in A extends to a k-AP for any k. Therefore, A contains a Θ(δ3)
fraction of all k-APs of Fnp for every k ≥ 3.

We will write a vector x ∈ Fnp as (u, v) where u, v ∈ Fn/2p form the first and last n/2 coordinates,
respectively of x.

We first compute the density of A as

Â(0) = Pr
u,v

(〈u, v〉 = 0)

= Pr
u

(u = 0) + Pr
u

(u 6= 0) Pr
u,v

(〈u, v〉 = 0|u 6= 0)

= p−n/2 + (1− p−n/2)1
p = 1/p+ 2−Ω(n).

We now estimate the non-zero Fourier coefficients of A. We will write v⊥u to denote that
〈v, u〉 = 0. Note that A = {(u, v) | u⊥v}.

The Fourier-transform of A at point c = (c1, c2) 6= 0 has value

Â(c) = Ex[1A(x) · ω〈c,x〉] = Eu
[
ω〈c1,u〉 Pr

v
(v⊥u)Ev[ω〈c2,v〉 | u⊥v]

]
(7.1)

where ω is a primitive p-th root of unity. If c2 = 0 6= c1 then the above is equal to

Euω〈c1,u〉 Pr(v⊥u) = 1
pEuω

〈c1,u〉 + (1− 1
p) Pr(u = 0) = (1− 1

p)p−n/2 < p−n/2

where we derived the second equality using the fact that ω is a primitive root and the expression
〈c1, u〉 takes all values in Fp equally often as u varies over Fn/2p .

So assume c2 6= 0. In case u 6‖ c2, the random variable 〈c2, v〉 is uniformly distributed over Fp
when v is chosen uniformly from the subspace orthogonal to u. Hence,

∀u 6‖ c2 : Ev[ω〈c2,v〉 | u⊥v] = 1
p

p−1∑
i=0

ωi = 0

Therefore, only the vectors u parallel to c2 have non-zero contribution to the expectation in Equa-
tion 7.1 and we can upper-bound |Â(c)| ≤ Pru(u ‖ c2) = 1/pn/2−1.

1Using a parametrization ` = {x+λy;λ ∈ Fp} of the line, the intersection of ` and a quadratic surface corresponds
to the solution set of a polynomial equation q(x+ λy) = 0 that is at most quadratic in λ.
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7.3 Gowers uniformity norm

The proof of Roth’s theorem shows that the only subsets of Fnp that are not 3-pseudorandom are sets
that are correlated with a function ωa(x) for a degree-1 polynomial a over Fp, where the correlation
is measured by the (absolute) value of the inner product

Ex←RFnp [1A · ωa(x)]

In the last section, we saw that linearly uniform quadratic surfaces are not 4-pseudorandom.
This phenomenon suggests that a uniformity norm that measures distance from 4-pseudorandomness
should be large if the set is strongly correlated with a polynomial of degree 2. A natural choice
for such a norm would be the maximum correlation with a quadratic polynomial. It is however
difficult, though not impossible, to relate the maximum correlation to the number of 4-APs in the
set.

Instead the Gowers uniformity norm estimates the correlation with polynomials of a certain
degree in a more indirect way, which then allows to relate that norm relatively easily to the number
of arithmetic progressions of a certain length in the set.

For a function f : Fnp → C and a vector y ∈ Fnp , the derivative in direction y is the function
Dyf : Fnp → C with

Dyf(x) = f(x)f(x+ y).

Note that Dy acts as a difference operator in the exponent if we write f(x) = ωg(x) for a p-th root
of unity ω. Hence, if g is a degree-d polynomial in x over Fp, then Dy reduces the degree of the
polynomial in the exponent by at least one, e.g. Dy(ωx1x2) = ω−y1x2−x1y2+y1y2 , where the exponent
is now linear in x. So if we apply the difference operator three times on a quadratic polynomial,
the resulting function is the constant function ω0 = 1.

The idea behind the Gowers uniformity norm is that instead of measuring the maximum cor-
relation of f with an unknown degree-(d − 1) polynomial, we can as well measure the expected
correlation of Dy1···ydf with the constant function ω0 = 1, where the directions y1, . . . , yd are chosen
uniformly at random from Fnp and Dy1···yd denotes the composition Dy1 ◦Dy2 ◦ . . .◦Dyd of difference
operators.

Definition 7.3.1. The degree-d Gowers uniformity norm Ud(f) of a function f : G→ C, where G
is a finite group, is defined as

Ud(f)
def
= (Ex,y1,...,yd←RGDy1···ydf(x))1/2d

Notice the expected value of a random derivative Ex,yDyf(x) = |Exf(x)|2 is always a non-
negative real number. So we also have,

Ex,y1,...,ydDy1···ydf = Ey2,··· ,ydEx,y1Dy1(Dy2···ydf(x)) = Ey2,··· ,yd |ExDy2···ydf(x)|2 ≥ 0

which shows that the Gowers norm is well-defined and non-negative.
The Gowers norm also satisfies the triangle inequality. However, since we do not use the triangle

inequality here, we omit its proof.
We will need the following two simple facts, which can be verified easily.
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Fact 7.3.2.
Uk(f)2k = Ey

[
Uk−1(Dyf)2k−1

]
Fact 7.3.3.

U1(f) = |Exf(x)|

Inverse theorems. We argued heuristically that any set that is correlated with a degree-(d− 1)
polynomial should have a large degree-d Gowers uniformity norm. In fact, the maximum correlation
with a degree-(d− 1) polynomial is always a lower bound on the degree-d Gowers norm. Since we
do not need it here, we omit the proof of this fact.

It is conjectured that correlation with a polynomial (on some subspace) is in fact the only
obstruction to uniformity.

So far, such an “inverse theorem” is only known for the degree-3 Gowers norm.

Theorem 7.3.4 (Inverse theorem for U3). Suppose f : Fnp → C is a function that takes values
whose magnitudes are bounded by 1 everywhere. Let ω denote a p-th root of unity. If U3(f) > η,
then there exists a subspace W of dimension at least n − η−O(1), and, for each coset y + W , a
quadratic polynomial qy(x) over Fp defined on y +W , such that

Ey←RFnp |Ex←Ry+W f(x)ωqy(x)| = Ω(ηO(1))

Assuming this theorem, it is relatively easy to carry out the second step of Gowers’ strategy for
the proof of Szemerédi’s theorem for k = 4, that is, to show that non-uniformity implies that the set
has higher density on some affine subspace of low codimension (cf. Section 7.5, Proposition 7.5.1).

7.4 Uniformity implies pseudorandomness

In order to study the pseudorandomness of a set with respect to arithmetic progressions of length
k, we introduce the following degree-k form on functions f : Fnp → C,

Λk(f) = Ex,y←RFnp f(x)f(x+ y)f(x+ 2y) · · · f(x+ (k − 1)y) (7.2)

For a set A ⊆ Fnp , the value of Λk(1A) gives the fraction of k-APs of Fnp that are completely
contained in A. For a random set A of density δ, we expect that it contains δk|Fnp | arithmetic
progressions of length k and hence EAΛk(1A) = δk. Hence, for a k-pseudorandom set we would
require Λk(1A) = Θ(δk).

It will be more convenient to consider Λk on the normalized function f = 1A− δ instead of 1A.
The following lemma relates Λk(f) and Λk(1A) for the case k = 4 using the Fourier-spectrum of f .

Lemma 7.4.1. ∣∣∣Λ4(f)− (Λ4(1A)− δ4)
∣∣∣ ≤ 4δ2‖f̂‖∞ (7.3)

Proof. Notice that f̂(0) = Ex[f ] = 0.
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For any x, y, z, w, we have

1A(x)1A(y)1A(z)1A(w)− δ4 = (f(x) + δ)(f(y) + δ)(f(z) + δ)(f(w) + δ)− δ4

= f(x)f(y)f(z)f(w) + δ
∑

f(u)f(v)f(t)

+ δ2
∑

f(u)f(v) + δ3
∑

f(u)

where the summations are over distinct u, v, t belonging to {x, y, z, w}. If x, y, z, w are consecutive
points of a random 4-AP in Fnp , then they are pairwise independent and uniformly distributed.
Hence the third and fourth summations on the right side disappear in expectation. Further, the
magnitude of the expectation of the second sum can be bounded, as in the proof of Roth’s theorem,
by 4δ2‖f̂‖∞ .

If ‖f̂‖∞ = Ω(δ2) then, as in the proof of Roth’s theorem, we can find an affine subspace of
low codimension, in which the set A has significantly higher density than δ. To prove Szemerédi’s
theorem for k = 4, we could then apply the induction hypthesis on the restriction of A to that
subspace.

So we may assume ‖f̂‖∞ � δ2. In this case, the set A is 4-pseudorandom if and only if
|Λ4(f)| � δ4. The next lemma will show that |Λ4(f)| can be upperbounded by the degree-3
Gowers uniformity norm of f . Hence the set A is 4-pseudorandom if U3(f)� δ4.

Lemma 7.4.2 (Generalized von Neumann theorem). For numbers c0, . . . , ck−1 ∈ Fp that are pair-
wise distinct and functions g0, g1, . . . , gk−1 : Fnp → C with ‖gi‖∞ ≤ 1, we have∣∣∣Ex,d[g0(x+ c0d)g1(x+ c1d) · · · gk−1(x+ ck−1d)

]∣∣∣ ≤ Uk−1(g0)

where x, d←R Fnp .
In particular for ci = i, k ≤ p and f = g0 = g1 = . . . = gk−1, we get

Λk(f) ≤ Uk−1(f).

Using the previous lemma and the fact Ud−1(f) ≤ Ud(f) whose proof we omit here, one can
show the following lemma which essentially generalizes Lemma 7.4.1 to larger k.

Lemma 7.4.3.
|Λk(1A)− δk| = Ok(Uk−1(f))

The lemma implies that there exists a constant ck such that a subset A of Fnp is k-pseudorandom
if Uk−1(1A−δ) ≤ ckδk. We say that sets A with Uk−1(1A−δ) ≤ ckδk are k-uniform. This establishes
the first step of Gowers’ proof of Szemerédi’s theorem, that uniformity implies pseudorandomness.

Proposition 7.4.4. Every k-uniform subset of Fnp is k-pseudorandom.

Note that our notion of k-uniformity actually implies that there is no correlation of the set
with a polynomial of degree k − 2. Therefore, k-uniformity is usually refered to as uniformity of
order k−2 [TV06]. This also explains the term linear uniformity used to refer to sets with |f̂ | � δ2,
which turns out to be equivalent to U2(f)� δ3, our condition for 3-uniformity.

In the remainder of the section, we present a proof of the generalized von Neumann theorem.
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Proof of Lemma 7.4.2. Let Λk,c(g0, . . . , gk−1) denote the k-linear form Ex,d[
∏
i gi(x+ cid)] that we

try to relate to the Gowers uniformity norm.
We induce on k. For k = 2, note that the random variables x+c0d and x+c1d are pairwise inde-

pendent since c0 6= c1 in Fp. Hence, the bilinear form evaluates to Λ2,c(g0, g1) = Exg0(x)Ex′g1(x′).
By Fact 7.3.3, we can then verify

|Λ2,c(g0, g1)| = |Exg0(x)Ex′g1(x′)| ≤ |Exg0(x)| = U1(g0)

For k > 1, we will bound the form Λk,c by the expected value of a (k − 1)-linear form Λk−1,c̄

over a certain distribution of arguments. Specifically, we have the following claim.

Claim 7.4.4.1.
|Λk,c(g0, . . . , gk−1)|2 ≤ |EyΛk−1,c̄(Dyg0, ḡ1, . . . , ḡk−2)|

where c̄0, . . . , c̄k−2 are pairwise distinct numbers in Fp and ḡ1, . . . , ḡk−2 : Fnp → C are random func-
tions depending on the variable y such that Pry(‖ḡi‖∞ ≤ 1) = 1.

Assuming Claim 7.4.4.1, we can end the proof of the current lemma as follows.

|Λk,c(g0, . . . , gk−1)|2 ≤ |EyΛk−1,c̄(Dyg0, ḡ1, . . . , ḡk−2)| (Claim 7.4.4.1)

≤ (Ey|Λk−1,c̄(Dyg0, ḡ1, . . . , ḡk−2)|2k−2
)1/2k−2

(Hölder)

≤ (EyUk−2(Dyg0)2k−2
)1/2k−2

(induction hypothesis)

= (Uk−1(g0)2k−1
)1/2k−2

= Uk−1(g0)2 (Fact 7.3.2)

Proof Sketch of Claim 7.4.4.1. We will prove the claim for the case k = 4. The proof for general
k is completely analogous.

We want to bound the following 4-linear form

Λ3,c(g0, . . . , g3) = Ex,d g0(x+ c0d)g1(x+ c1d)g2(x+ c2d)g3(x+ c3d) (7.4)

In order to eliminate g3, we decouple the argument of g3 from the variable d by substituting x̄ for
x+ c3d. Since the distribution of x̄ is uniform, we can rewrite (7.4) as

Λ3,c(g0, . . . , g3) = Ex̄,d g0(x̄+ c̄0d)g1(x̄+ c̄1d)g2(x̄+ c̄2d)g3(x̄)
= Ex̄g3(x̄) Edg0(x̄+ c̄0d)g1(x̄+ c̄1d)g2(x̄+ c̄2d)

where c̄i = ci − c3.
Using ‖g3‖∞ ≤ 1, we eliminate g3 and arrive at

|Λ3,c(g0, . . . , g3)| ≤ Ex̄
∣∣Ed g0(x̄+ c̄0d)g1(x̄+ c̄1d)g2(x̄+ c̄2d)

∣∣
≤
(
Ex̄
∣∣Ed g0(x̄+ c̄0d)g1(x̄+ c̄1d)g2(x̄+ c̄2d)

∣∣2)1/2
(Cauchy-Schwarz)

=
(
Ex̄ Ed,d′Dc̄0(d′−d)g0(x̄+ c̄0d) Dc̄1(d′−d)g1(x̄+ c̄1d) Dc̄2(d′−d)g2(x̄+ c̄2d)

)1/2
Since c̄0 6= 0 ∈ Fp, the random variable y = c̄0(d′ − d) is uniformly distributed. Substituting y for
c̄0(d′ − d), we obtain

|Λ3,c(g0, . . . , g3)| ≤
(
Ey Ex̄,d Dyg0(x̄+ c̄0d) Dyc̄1/c̄0g1(x̄+ c̄1d) Dyc̄2/c̄0g2(x̄+ c̄2d)

)1/2
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Since each ḡi = Dyc̄1/c̄0g1 is bounded by 1 for all y and the numbers c̄i = ci − c3 ∈ Fp are pairwise
distinct, we get as desired

|Λ3,c(g0, . . . , g3)| ≤
(
Ey Ex̄,d Dyg0(x̄+ c̄0d) ḡ1(x̄+ c̄1d) ḡ2(x̄+ c̄2d)

)1/2

7.5 Non-uniformity implies density increment

Assuming the inverse theorem for U3, we can carry out the density increment argument for sets
that are not 4-uniform.

Proposition 7.5.1 (Non-uniformity implies density increment). Let A ⊆ Fnp be set of density δ.

If U3(1A − δ) > η then there exists an affine subspace of dimension at least n/2 − η−O(1) on
which A has density δ + Ω(ηO(1)).

Using Proposition 7.4.4 and Proposition 7.5.1, one can show Szemerédi’s theorem for the groups
Fnp and k = 4 by a simple induction, similar to the induction in Roth’s proof for k = 3.

There are generalizations of Proposition 7.5.1 known that allow to proof Szemerédi’s theorem
for groups ZN and larger k. It is interesting that such a generalization for k > 4 could be proved,
since a corresponding inverse theorem for the norm Uk−1 is not know.

The proof of Proposition 7.5.1 goes in two steps. First, we show that for any non-uniform set
A there exists an affine subspace W of large dimension such that A has significantly higher density
in a quadratic surface of W . For this step we are using the inverse theorem for U3.

Second, we show that any quadratic surface of a vector space over Fp can be paritioned into
affine subspaces of large dimension. Hence in one of those affine subspaces, the set A must have
density as least as large as in the quadratic surface.

Lemma 7.5.2. If U3(1A − δ) > η, then there exists an affine subspace W ⊆ Fnp of dimension n−
η−O(1) and a quadratic polynomial q such that

Ex←RS1A(x) ≥ δ + ηO(1)

where S is the quadratic surface {x ∈W | q(x) = 0}.

Proof. Using the inverse theorem, we know there exists a subspace W of dimension n− 1/ε, where
ε = Ω(ηO(1)), for which the following holds. Partition Fnp into cosets {Wy} of W . Then for each
coset Wy, there exists a quadratic function qy such that the average correlation Ey|EWyf(x)ωqy(x)|
is at least ε.

Let Syz ⊆ Wy be the quadratic surface {x ∈ Wy | qy(x) = z}. Note that the collection {Syz}yz
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forms a partition of Fnp that refines the partition {Wy}y. We can thus write,

ε ≤ Ey|EWyf(x)ωqy(x)| ≤ Ey
∑
z

∣∣EWyf · 1Syz
∣∣ (triangle inequality)

=
∑
y

Pr
Fnp

(Wy)
∑
z

∣∣EWyf · 1Syz
∣∣

=
∑
y

Pr
Fnp

(Wy)
∑
z

Pr
Wy

(Syz)|ESyzf |

=
∑
yz

Pr
Fnp

(Syz)|ESyzf |

Since
∑

yz PrFnp (Syz)ESyzf = EFnp f = 0, we have

ε ≤
∑
yz

Pr
Fnp

(Syz)|ESyzf | = 2
∑
yz∈I+

Pr
Fnp

(Syz)ESyzf

where the second sum is only over the pairs y, z with ESyzf ≥ 0, denoted by I+.
From the above, we conclude by an averaging argument that there exists a pair y, z such that

ESyz1A = δ + ESyzf ≥ δ + ε/2.

The affine subspace Wy and the quadratic polynomial q = qy − z are as desired by the lemma.

Note that by translating the set A, we can assume that the subspace W from Lemma 7.5.2 is
a linear subspace.

Lemma 7.5.3. Any quadratic surface S = {x ∈W | q(x) = 0} of a vector space W over Fp can be
partitioned into affine subspaces, each of dimension at least dim(W )/2− 5/2.

Proof. We can write q as q(x) = 〈x,Mx〉 + 〈a, x〉 + b, where M : W → W is a symmetric linear
operator, a ∈W , and b ∈ Fp. Let Q(x) = 〈x,Mx〉 denote the quadratic form given by M .

Let U be the linear subspace of W spanned by all x ∈W with Q(x) = 0.
Observe that q restricted to a coset y + U is an affine linear function, as for every u ∈ U ,

Q(y + u) = Q(y) + 2〈u,My〉+Q(u) = Q(y) + 2〈u,My〉.

Let `y : W → Fp be an affine linear function that agrees with q on y + U . Note that S ∩ (y + U) is
equal to the intersection of y+U and the affine hyperplane {x ∈W | `y(x) = 0}. Hence S∩ (y+U)
is either empty or an affine subspace of y + U of dimension at least dim(U)− 1.

In order to prove the lemma it remains to show that dim(U) ≥ dim(W )/2− 3/2.
Note that for every pair x, y ∈ U , the inner product 〈y,Mx〉 = 0 vanishes, since over a field of

characteristic p > 2,

0 = 1
2Q(x+ y) = 1

2(Q(x) + 2〈y,Mx〉+Q(y)) = 〈y,Mx〉.

Hence M maps U into the orthogonal complement of U .
Let U ′ = {y ∈ W | ∀x ∈ U : 〈y,Mx〉 = 0} be the orthogonal complement of M(U) ⊆ W . Note

that U is a subspace of U ′. In order to conclude dim(U) ≥ dim(W )/2− 3/2, we will show that the
U ′ is not much larger than U .
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Claim 7.5.3.1. dim(U ′) < dim(U) + 3

Assuming the claim, we can finish the proof as follows. The dimension of M(U) can be at most
the dimension of U . Also, the dimension ofW is equal to dim(M(U))+dim(U ′) ≤ dim(U)+dim(U ′).
By Claim 7.5.3.1, we then conclude dim(W ) < 2 dim(U) + 3 .

Proof of Claim 7.5.3.1. For sake of contradiction, assume that U ′ has dimension at least
dim(U) + 3. Then the quotient vector space U ′/U contains three linearly independent vectors
x1 + U , x2 + U , and x3 + U .

Consider the quadratic polynomial Q′ ∈ Fp[a1, a2, a3] obtained by the substitution Q′ =
Q(a1x1 + a2x2 + a3x3). By the Chevalley-Warning theorem, the number of solutions to Q′(a) = 0
is a multiple of the characteristic. Since Q′(0) = 0, the number of solutions is not zero, and hence
there exists at least one other solution a = (a1, a2, a3) 6= 0.

By construction, the vector x′ = a1x1 + a2x2 + a3x3 is in the kernel of Q, that is, Q(x′) = 0.
Furthermore, since x1, x2, x3 are linearly independent in U ′/U , the vector x′ is not contained in U .
This contradicts the fact that U is the span of vectors in the kernel of Q.
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Summary: We show how Gowers Uniformity can be used to obtain XOR lemmas for
correlation with low degree GF (2) polynomials.

8.1 Introduction

A basic computer science question is to decide if a function f is in a given complexity class C.
This question in some sense deals with “worst-case” complexity. When we deal with average-case
complexity, we consider the following question: for a function f that’s not contained in C, how well
does C approximate f?

Consider a boolean valued function f : {0, 1}n → {−1,+1}. Though we’re restricting our
attention to Fn2 , many of the results proved in this lecture can be extended to Fnp . Throughout the
lecture we’ll also restrict our attention to the uniform distribution on inputs.

Consider maxc∈C Prx∈{0,1}n [c(x) = f(x)]. This quantity is a measure of how well f is approxi-
mated by C. Note that if it equals 1, then f is exactly computed by some member of C.

Another related measure of agreement is the correlation.

Corr(f, C) .= max
c∈C
|Ex [f(x)c(x)] | = max

c∈C
|Pr
x

[f(x) = c(x)]− Pr
x

[f(x) 6= c(x)] |.

Observe that Corr(f, C) ∈ [0, 1]. Clearly when Corr(f, C) = 1 then f fully correlates with a
member of C, and when Corr(f, C) = 0 then f is completely uncorrelated. In fact, when Corr(f, C)
is close to 0, one can use this information to build pseudorandom generators. Hence pseudorandom-
ness is one reason to study correlation. Another reason is that if it is known that a function f has
low correlation with a complexity class, then this information can be used to prove non-inclusion
in a stronger complexity class. For instance, if for some complexity class C, Corr(f, C) < 1/t, then
f 6∈ C′, where C′ is class of functions that are obtained by taking the majority of t functions of C.

If a function f has low correlation with a complexity class, it is in some sense “hard” to
compute by that complexity class. Functions with extremely low correlation demonstrate certain

57
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pseudorandom properties and hence are of interest. It would be useful to have a method by which
when given a function that is hard to compute, we can produce a function that is even harder to
compute.

Hardness Amplification: Suppose Corr(f, C) ≤ α < 1 and we want to amplify the “hard-
ness”. One idea for this amplification which we hope might work is to take the exclusive OR of f
on many independent copies.

f⊕t(y1, y2, . . . , yt) =
t∏
i=1

f(yi)

where yi ∈ {0, 1}n. If f took values in {0, 1} where +1 and −1 are identified 0 and 1 respectively,
then this product is equivalent to taking the parity of f on all the xi. The hope is that Corr(f⊕t, C) ≤
αt. A big question is the following: for what C can this hope be materialized?

Let C0 denote the class of all constant functions. In this case there is perfect exponential decay,
since for any function f ,

Corr(f⊕t, C0) = |E
[
f⊕t
]
| = |(E [f ])|t = Corr(f, C0)t.

Yao’s XOR Lemma [Yao82](whose first proof appears in [Lev85]) gives a highly nontrivial com-
plexity class for which something similar is true. Let C = P/poly, which is the class of all polynomial
sized circuits. Then,

∀t,Corr(f⊕t, P/poly) ≤ Corr(f, P/poly)t +
1
n
.

The problem is that we don’t have any explicit lower bounds for the above class or else we could
use it to amplify the hardness. In the rest of the lecture we’ll discuss correlation with low degree
polynomials over GF (2) and prove some hardness amplification results.

8.2 Low degree polynomials over GF (2)

Let Pd denote the class of all degree (at most) d polynomials in GF (2) over any set of variables
x1, x2, . . . , xn. We can assume that the polynomials take values in {−1,+1} by raising −1 to the
{0, 1} value of the polynomial. For example, (−1)x1⊕x3 ∈ P1 and (−1)x1x2⊕x3 ∈ P2.

Pd is an important and well studied complexity class. AC0 denotes the class of functions
computable by constant depth, polynomial sized circuits with unbounded fanin AND and OR gates.
A number of AC0 bounds were proved in a series of results. It was proved that PARITY 6∈ AC0.
Now, suppose we add PARITY to AC0, i.e. in addition to AND and OR, we also allow Mod 2 gates.
Call the resulting complexity class AC0[2]. Razborov [Raz87] proved that MAJORITY 6∈ AC0[2].
The proof of the result consists of two parts and both parts deal with the correlation of functions
to complexity classes of polynomials.

1. Corr(AC0[2], P(logn)O(1)) ≥ 1− 1
n .

2. Corr(MAJORITY, P 3√n) ≤ 1√
n

.
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Both the above results are nontrivial. It easily follows that MAJORITY 6∈ AC0[2], since if it
was, then by the first part Corr(MAJORITY, P(logn)O(1)) ≥ 1 − 1

n . However this contradicts the
second part.

A big open question is to find an explicit function f for which Corr(f, Plogn) ≤ 1
n . Razborov

showed that MAJORITY is an example of a function f for which Corr(f, Plogn) ≤ 1√
n

, and there
has been no improvement since then.

In the rest of the lecture we’ll obtain hardness amplification results for the class Pd and use it
to give explicit functions that have low correlation with Pd.

8.3 XOR lemma for correlation with low degree polynomials over
GF (2)

Most of the results here appeared in [Vio06], and are extended and put in a more general context
in [VW07]. The main result of this section is the following result: Let f : {0, 1}n → {−1,+1} be a
function. If Corr(f, Pd) ≤ 1− 2−d, then ∀t,Corr(f⊕t, Pd) ≤ exp(− t

4d
).

To prove XOR lemmas, the basic hope is to find a norm on boolean functions that in some
sense captures its correlation with a given complexity class. Informally, we’d like the norm N to
have the following properties:

1. ∀f : {0, 1}n → R, N(f) ∈ R.

2. for every function f , N(f) ≈ Corr(f, C).

3. If f and g are two functions on disjoint inputs, then N(fg) = N(f)N(g).

Once we have such a norm, up to the “≈”, we get the XOR lemma in a trivial way, since

Corr(f⊕t, C) ≈ N(f⊕t) = N(F )t ≈ Corr(f, C)t.

The question is - where do we get such norm? [VW07] show that when C = Pd−1, then Gower’s
degree-d norm Ud satisfies all the previously mentioned properties. The norm was introduced by
Gowers in [Gow98] and [Gow01], and also independently by [AKK+03].

Let Y = y1, y2, . . . yd ∈ {0, 1}n. We define the cube C(Y ) to be the following multiset of points
spanned by y1, . . . , yd.

C(Y ) =

⊕
j∈S

yj |S ⊆ [d]

 .

Let f : {0, 1}n → {− 1,+1} be a function. The degree-d norm of f is defined as

Ud(f) = Ex,y1,...yd

(
∏

z∈C(Y )

f(x⊕ z))

 .
Note that since C(Y ) is actually a multiset, this may also be written as

Ud(f) = Ex,y1,...yd∈{0,1}n

 ∏
S⊆[d]

f

x⊕⊕
j∈S

yj

 .
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Note that (
∏
z∈C(Y ) f(x ⊕ z)) is shifting the cube by x and multiplying all the values on the

cube, which is like taking the XOR of all the values if 1→ 0 and −1→ 1.
The functional Ud can be defined more generally for complex valued functions. In the definition

of Ud, all the terms in the product that correspond to the sum of an odd number of elements of Y
are conjugated. This ensures that Ud is real valued.

For z ∈ C(Y ), let Sz denote the number of elements of Y that are summed to obtain z. For a
complex number w, let wi be w if i is even, and it’s conjugate w if i is odd.

Let f : {0, 1}n → C.

Ud(f) = Ex,y1,...yd∈{0,1}n

 ∏
z∈C(Y )

f(x⊕ z)Sz
 .

In most of the results that follow, it will suffice to consider boolean valued functions. However,
for the result in Section 8.4 it will be convenient to consider the more general case of complex
valued functions.

Proposition 8.3.1. If p ∈ Pd−1, then for all x and Y = 〈y1, y2, . . . , yd〉 ∈ (2n)d, (
∏
z∈C(Y ) p(x ⊕

z)) = 1.

Proof. First note that if Y does not span a d dimensional space, then each member of C(Y )
appears in C(Y ) an even number of times and hence (

∏
z∈C(Y ) p(x ⊕ z)) = 1. If Y does span

a d dimensional space, then there is a linear transformation that maps Y = 〈y1, y2, . . . , yd〉 to
〈e1, e2, . . . ed〉, where ei ∈ {0, 1}n is the vector with a 1 only in the ith coordinate. Such a linear
transformation maps a degree d polynomial p to another degree d polynomial say p′, and if the
result is true for p′ and 〈e1, e2, . . . ed〉, it also holds for p and 〈y1, y2, . . . , yd〉. Hence, we only need to
consider Y = 〈e1, e2, . . . ed〉. We observe that it suffices to prove the result when p is a monomial.
Let p =

∏
i∈I xi, where I ⊆ [n] with |I| ≤ d − 1. Pick j ∈ [d] \ I. Note that for all vectors y,

p(y+ ej) = p(y). Hence we can pair the terms in the product (
∏
z∈C(Y ) p(x⊕ z)) such that p takes

the same value on the members of each pair. This proves the result.
Another way of viewing this result is to observe that Ud(f) is like taking the average of d

derivatives of f , each of which reduces the degree of f by 1. First observe that if p is a polynomial
of degree d in n variables, then ∀y ∈ {0, 1}n, p(x⊕y)×p(x) is a polynomial of degree at most d−1 as
any variable that occurs with even degree in a monomial is redundant. This is analogous to taking
the first derivative of p in the direction specified by y. On the same lines, for y1, . . . , yk ∈ {0, 1}n,
we could define the derivative of order k with respect to y1, . . . , yk as

[∏
z∈C(Y ) p(x⊕ z)

]
, where

C(Y ) is the cube of y1, . . . yk. This is a polynomial of degree at most d − k, and the result easily
follows.

8.3.1 The property testing perspective

It is not difficult to show that the condition in Proposition 8.3.1 actually characterizes Pd−1, i.e.
p ∈ Pd−1 if and only if for all x and Y , (

∏
z∈C(Y ) p(x ⊕ z)) = 1. This characterization suggests a

very natural way of testing whether a given function f is a degree d polynomial or very far from
it. Consider the following property tester for Pd−1:
Pick x, y1, y2, . . . , yd at random. If (

∏
z∈C(Y ) f(x⊕ z)) = 1, then accept. Otherwise reject.
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Observe that Ud(f) completely captures the probability that the tester accepts. Ud(f) =
Pr [tester accepts] − Pr [tester rejects]. By Proposition 8.3.1, if f ∈ Pd−1 then the tester accepts
with probability 1.

It was shown by [AKK+03] that if Corr(f, Pd−1) ≤ 1− 2−d then Ud(f) ≤ 1− 4−d. This result
begins to give some indication of how well the functional Ud captures correlation. The following is a
high level sketch of their proof: By Proposition 8.3.1 we know that when f is a polynomial of degree
d− 1, if we restrict to any d dimensional subspace, the parity of f evaluated on the subspace is 0.
This can be used to “predict” the value of f at a point of the d dimensional subspace by knowing
the values of f at the rest of the points in the subspace. For any function f , define a function g
such that for a point y, g(y) is the majority over all subspaces containing y of the “predicted” value
of y on that subspace. [AKK+03] show that when the property tester mentioned above accepts
with sufficiently high probability (more specifically if Ud(f) ≥ 1− 4−d) then the function g is close
to f (Corr(f, g) ≥ 1− 2−d). Moreover they also show that g ∈ Pd−1. Together, they imply that if
Corr(f, Pd−1) ≤ 1− 2−d then Ud(f) ≤ 1− 4−d.

8.3.2 Properties of Gowers norm

Lemma 8.3.2. Let f : {0, 1}n → {−1,+1} and g : {0, 1}n′ → {−1,+1} be two functions. Define
(f⊗g) : {0, 1}n×{0, 1}n′ → {−1,+1} by (f⊗g)(x, y) = f(x) ·g(y). Then Ud(f⊗g) = Ud(f) ·Ud(g).

Proof. The proof follows immediately from the definitions.

Lemma 8.3.3. Let f : {0, 1}n → C be a function. For all functions p that belong to Pd−1,
Ud(f · p) = Ud(f). Here (f · p) is defined to be the product of f and p on the same input.

Proof. Ud(f ·p) = Ex,yi,...yd

[
(
∏
z∈C(Y ) f(x⊕ z))

] [
(
∏
z∈C(Y ) p(x⊕ z))

]
. By Proposition 8.3.1, for all

x and Y we have that
[
(
∏
z∈C(Y ) p(x⊕ z))

]
= 1. Hence Ud(f ·p) = Ex,yi,...yd

[
(
∏
z∈C(Y ) f(x⊕ z))

]
=

Ud(f).

Lemma 8.3.4. ∀f : {0, 1}n → C, Corr(f, Pd−1) ≤ Ud(f)
1

2d .

Proof. 1 We first show that ∀g : {0, 1}n → C, E [g]2
d

≤ Ud(g). The proof is essentially the Cauchy–
Schwarz inequality applied d− 1 times.

1Taken from [VW07].
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Ud(f) = Ex,y1,...yd∈{0,1}n

 ∏
z∈C(Y )

f(x⊕ z)Sz


= Ey1,...yd−1∈{0,1}n

Ex,yd
 ∏
z∈C(Y−yd)

f(x⊕ z)Sz · f(x⊕ z ⊕ yd)Sz+1


= Ey1,...yd−1∈{0,1}n

Ex
 ∏
z∈C(Y−yd)

f(x⊕ z)Sz
 ·Ex

 ∏
z∈C(Y−yd)

f(x⊕ z)Sz




= Ey1,...yd−1∈{0,1}n

|Ex
 ∏
z∈C(Y−yd)

f(x⊕ z)Sz
 |2


≥ |Ey1,...yd−1∈{0,1}n

Ex
 ∏
z∈C(Y−yd)

f(x⊕ z)Sz
 |2

= Ud−1(f)2

Now, E [g] = |Ex [g(x)] | =
√
U1(g) ≤ U2(g)1/22 ≤ . . . ≤ Ud(g)1/2d . Hence E [g]2

d

≤ Ud(g).
For p ∈ Pd−1, Corr(f, p) = |Ex [(f · p)(x)] |. But |Ex [(f · p)(x)] | = U1(f · p)1/2 ≤ U2(f · p)1/22 ≤

. . . ≤ Ud(f · p)1/2d = Ud(f)1/2d . This completes the proof of the lemma.

Conclusion of proof of XOR lemma
To conclude, if Corr(f, Pd−1) ≤ 1− 2−d, then

Corr(f⊕t, Pd−1) ≤ Ud(f⊕t)1/2d = Ud(f)t/2
d ≤ (1− 1/4d)t/2

d ≤ exp(−t/8d).

The first inequality follows from Lemma 8.3.4, the next equality follows from Lemma 8.3.2, and
the next inequality follows from the result of [AKK+03].

8.4 Correlation of GF(2) polynomials with Modn3

We use the results proved in the previous section to give an explicit example of a function that has
exponentially decaying (in the number of variables) correlation with low degree GF (2) polynomials.

Let ω ∈ C be a primitive cube root of unity. Consider the function Modn3 : {0, 1}n → C which
is defined as Modn3 (x1, x2, . . . , xn) = ω

∑
xi =

∏n
i=1 ω

xi .

Bourgain [Bou05] showed that Corr(Modn3 , Pd−1) ≤ exp(−n
8d

), where now the correlation between
two functions f and g is defined as the norm of the complex number E [fg].We show here how to
derive a slightly better bound as a consequence of the results in [VW07].

By Lemma 8.3.4, Corr(Modn3 , Pd−1) ≤ Ud(Modn3 )
1

2d . By Lemma 8.3.2, Ud(Modn3 )
1

2d = Ud(Mod1
3)

n

2d .
Consider the function Mod1

3 : {0, 1} → C, where Mod1
3(0) = 1 and Mod1

3(1) = ω.
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Ud(Mod1
3) = Ex,y1,...yd∈{0,1}

 ∏
z∈C(Y )

(ω(x⊕z))Sz

 .
Now, if any one of y1, . . . yd is 0, then

∏
z∈C(Y )(ω

(x⊕z))Sz = 1, since for ever term in the product
that is ω, there is one that is ω2. Also, if y1 = y2 = · · · = yd = 1, then

∏
z∈C(Y )(ω

(x⊕z))Sz =
ω2d+ω−2d

2 = ω+ω−1

2 = −1
2 . Hence Ud(Mod1

3) = (1− 2−d) · 1 + 2−d · (−1/2) ≤ 1− 2−d.
Thus we conclude that Corr(Modn3 , Pd−1) ≤ (1− 2−d)

n

2d ≤ exp(−n
4d

).
The above correlation bound for the complex-valued function Mod3 also implies a bound for a

Boolean analogue of the Mod3 function for an appropriate definition of correlation [VW07].
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9
Applications to PCPs

Luca Trevisan

Scribe(s): Rajsekar Manokaran

Summary: In this lecture, we will use Gowers uniformity to design a relaxed linearity
test that optimizes on the query complexity. We will see how this construction can be
extended to obtain a PCP verifier with similar query complexity, although assuming
the Unique Games Conjecture.

9.1 PCPs and Query Complexity

In this section, we will see a construction of a PCP verifier for Unique-Games-Hard languages that
makes q queries, has almost perfect completeness and soundness q+1

2q + ε for arbitrarily small ε > 0.

9.1.1 Linearity Testing

Linearity testing is central to constructing PCP verifiers and will hence serve as a good starting
point to construct query efficient PCP verifiers.

Definition 9.1.1. A function f : {0, 1}n → {−1, 1} is said to be linear if ∀x, y ∈ {0, 1}n:

f(x)f(y) = f(x+ y)

equivalently, f is linear if ∃a1, a2, . . . an ∈ {0, 1} such that:

f(x) = (−1)a1x1+a2x2+...+anxn

In the linearity testing problem, we are given oracle access to a function f and we have to
distinguish between the following two cases:

1. f is linear

65



66 CHAPTER 9. APPLICATIONS TO PCPS LUCA TREVISAN

2. f is “far” from being linear: For every linear function g, f agrees with g in at most 1/2 + ε
fraction of the input.

Blum, Luby and Rubinfeld [BLR93] gave a very simple such linearity test:

Algorithm 9.1.2 (BLR Linearity Test).
Input: Oracle access to a boolean function f

1. Choose x, y ←R {0, 1}n

2. Accept if and only if f(x)f(y) = f(x+ y)

The above test can be analyzed quite elegantly by looking at the fourier spectrum of f . It is
clear that the above test always accepts linear functions. The following theorem will show that the
test rejects functions that agree in less than a 1/2 + ε fraction with probability at least 1/2 + ε.

Theorem 9.1.3. If Algorithm 9.1.2 accepts a (boolean) function f with probability greater than
1/2 + ε, then there exists a set S ⊆ [n] such that the (linear) function χS = (−1)+{i∈S}xi agrees in
at least 1/2 + ε fraction with f .

Proof.

Pr
x,y

[f(x)f(y) = f(x+ y)] = 1
2 + 1

2Ex,yf(x)f(y)f(x+ y)

= 1
2 + 1

2Ex,y
∑
a,b,c

f̂af̂bf̂cχa(x)χb(y)χc(x+ y)

= 1
2 + 1

2

∑
a,b,c

f̂af̂bf̂cExχa(x)χc(x)Eyχb(y)χc(y)
(

by linearity of χS (and
of expectation)

)
= 1

2 + 1
2

∑
S

f̂3
S (χS form a orthonormal basis )

≤ 1
2 + 1

2

∑
S

f̂2
S max

S
f̂S

≤ 1
2 + 1

2 max
S

f̂S

Since f̂S = Ex[f(x)χS(x)], the probability that f agrees with χS is:

Pr
x

[f(x) = χS(x)] = 1
2 + 1

2Exf(x)χS(x)

= 1
2 + 1

2 f̂S

≥ Pr
x,y

[f(x)f(y) = f(x+ y)] (choosing an S that maximizes f̂S)

Thus, this test rejects functions far from being linear with probability about 1
2 . The soundness

can be improved simply by repeating this test independently. Repeating t times, we get a test that
queries the function f at 3t points and with “soundness” 1/2t (we are interested in cases where ε
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is arbitrarily small). We are interested in improving the query complexity of the test. This test,

queries f at q points and has soundness 1/2
q
3 .

Samorodnitsky and Trevisan [ST00] considered the following extension to test, called the com-
plete graph test:

Algorithm 9.1.4 (Complete Graph Test).
Input: Oracle access to a boolean function f

1. Choose x1, . . . xk ←R {0, 1}n

2. For every pair (i, j); 1 ≤ i < j ≤ k, check if f(xi)f(xj) = f(xi + xj)

3. Accept only if every test accepts

We evaluate the function at k +
(
k
2

)
points and perform

(
k
2

)
tests. [ST00] show that in case

the function is far from being linear, the tests behave almost independently thus accepting with
probability around (1

2)q−
√

2q.

9.1.2 Hypergraph Tests and Gowers Uniformity

For further improving the query complexity, we would like to look at the so called complete hyper-
graph test [Sam05]:

Algorithm 9.1.5 (Complete Hypergraph Test).
Input: Oracle access to a boolean function f

1. Choose x1, . . . xd ←R {0, 1}n

2. For every pair S ⊆ [d]; |S| ≥ 2, check if
∏
i∈S f(xi) = f(

∑
i∈S xi)

3. Accept only if every test accepts

Strictly speaking, the test needs to be parametrized by d. We will informally refer to the test
as the hypergraph test and refer to it as the d-hypergraph test when the parameter d needs to be
explicitly specified.

The test queries f at q = 2d − 1 points and performs 2d − d − 1 tests. Again, if the tests
behave independently when f is far from being linear, we will get a linearity test that attains a
soundness value of (q + 1)/2q This, however, turns out to be false: there exists functions which
are far from being linear on which the tests are not all mutually independent. For example, the
function f(x) = (−1)x1x2+...+xn−1xn is far from begin linear. However, as is shown in [ST00], the
test accepts f with probability at least 2−q+Ω(

√
q). It is also known [ST06] that any linearity test

that makes q queries and accepts linear functions with probability atleast c must accept f with
probability at least (1 − c) + 2−q+Ω(

√
c). Thus, the basic linearity testing problem does not have

much room for improvement.
However, as we will see, if we are willing to relax the definition of the test to a “(d− 1) degree

linearity test”, we can use the d-hypergraph test (or in fact any hypergraph test where each edge in
the hypergraph contains at most d vertices). We will begin by defining the Gowers inner product,
Gowers uniformity [Gow98, Gow01] and the “generalized” linearity test.
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Definition 9.1.6 (Gowers inner product). The Gowers dimension-d inner product of a collection
{fS}S⊆[d] of functions fS : {0, 1}n → R is defined as:

〈{fS}〉Ud ≡ Ex,x1,...,xd

 ∏
S⊆[d]

fS

(
x+

∑
i∈S

xi

)
Definition 9.1.7 (Gowers Uniformity). The Gowers dimension-d uniformity of f : {0, 1}n → R is
defined as:

Ud(f) ≡ Ex,x1,...,xd

 ∏
S⊆[d]

f

(
x+

∑
i∈S

xi

) = 〈{f}〉Ud

Definition 9.1.8 ((d−1)-degree linearity test). Given oracle access to a function f , a (d−1)-degree
linearity test distinguishes between the following two cases:

1. f is linear

2. Ud(f) ≤ ε

We are now in a position to prove that the d-hypergraph test tests (d−1)-degree linearity. Since
the “completeness” case is trivial, we will be done if we prove the following theorem.

Theorem 9.1.9. If f is a function such that Ud(f) ≤ ε2
d+1

, then f passes the d-hypergraph test
with probability at most 1/22d−d−1 + ε = 1/2k + ε, then

We will need the following two simple claims about the gowers uniformity and inner prod-
uct [Gow01, GT04].

Claim 9.1.9.1. [〈{fS}〉Ud ]
2d ≤

∏
S U

d(fS)

Proof.

|(〈{fS}〉Ud)| =

∣∣∣∣∣∣Ex1,...,xd−1
Ex,xd

∏
S⊆[d]

fS

(
x+

∑
i∈S

xi

)∣∣∣∣∣∣
=

∣∣∣∣∣∣Ex1,...,xd−1

Ex
∏

S⊆[d−1]

fS

(
x+

∑
i∈S

xi

)Ex
∏

S⊆[d−1]

fS∪{d}

(
x+

∑
i∈S

xi

)∣∣∣∣∣∣
≤

Ex1,...,xd−1

∣∣∣∣∣∣Ex
∏

S⊆[d−1]

fS

(
x+

∑
i∈S

xi

)∣∣∣∣∣∣
2

1
2[
. . .

]1
2

=

Ex1,...,xd,x

∏
S⊆[d−1]

fS

(
x+

∑
i∈S

xi

)
1
2[
. . .

]1
2

Doing this recursively gives the claim.
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Claim 9.1.9.2. Ud−1(f) ≤
√
Ud(f)

Proof.

[Ud−1(f)]
2 ≤ Ex1,...,xd−1

Ex
∏

S⊆[d−1]

f

(
x+

∑
i∈S

xi

)2

= Ex,x1,...,xd

 ∏
S⊆[d]

f

(
x+

∑
i∈S

xi

) = 〈{f}〉Ud

Proof of Theorem 9.1.9. If a function f passes the d-hypergraph test with probability at least
1/2k + ε, then:

1
2k

+ ε ≤ Ex1,...xd

 ∏
S⊆[d],|S|≥2

(
1 +

∏
i∈S f(xi)f(

∑
i∈S xi)

2

)
≤ 1/2k

 ∑
X⊆2[d]

Ex1,...xd

∏
S∈X

∏
i∈S

f(xi)f(
∑
i∈S

xi)


Hence, there exists a non-empty set of “edges” X ⊆ 2[d], giving:

Ex1,...,xt

∏
S∈X

∏
i∈S

f(xi)f(
∑
i∈S

xi) ≥ ε

If t is the size of the largest edge in X, then assuming without loss of generality that [t] ∈ X,
we can fix the variables xt+1, . . . xd such a way that the above expectation (over x1 . . . xt) is at least
ε. Further, we can group the fixed terms thus forming a collection of functions {fS}S⊆[t] such that

Ex1,...,xt

∏
S⊆[t]

[
fS(
∑
i∈S

xi)

]
≥ ε

Note that since [t] is the largest edge, f[t] = f . Using this, we can lower bound the gowers inner
product of a related set of functions as follows:

Ex1,...,xt

∏
S⊆[t]

fS(
∑
i∈S

xi)

2

≤ Ex1,...,xt−1

Ext ∏
S⊆[t]

fS(
∑
i∈S

xi)

2

= Ex1,...,xt−1

∏
S⊆[t],t/∈S

(
fS(
∑
i∈S

xi)

)2
Ext ∏

S⊆[t],t∈S

fS(
∑
i∈S

xi)

2

= Ex1,...,xt−1

Ext ∏
S⊆[t−1]

fS∪{t}(xt +
∑
i∈S

xi)

2

= 〈{fS∪{t}}〉Ut
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Using Claim 9.1.9.1 and Claim 9.1.9.2, we get

ε2 ≤
∣∣∣〈{fS∪{t}〉Ut∣∣∣ ≤ minS ∣∣U t(gS)

∣∣1/2t ≤ Ud(f)
1/2d

This bound on the soundness of the hypergraph test is also known to be tight [ST06].

9.1.3 Gowers Uniformity, Long Codes and Influence

In this section, we sketch the construction of the PCP verifier. For constructing the verifier, we
will want to test long codes. This is done by extending the hypergraph test to the setting of several
functions and by introducing noise in the test.

Algorithm 9.1.10 (γ-noisy hypergraph test).

Fix a hypergraph ([t], E) and a γ > 0.
Let µγ denote the distribution over {0, 1}n where each bit is independently chosen to be 1 with

probability γ.
Input: Oracle access to a boolean function {ga}a∈[t]∪E

1. Choose x1, . . . xt ←R {0, 1}n

2. Choose n1, . . . nt ←R µγ

3. For every e ∈ E, choose ne ←R µγ

4. Accept if and only if
∀e ∈ E,

∏
i∈e

gi(ni + xi) = ge(ne +
∑
i∈e

xi)

Given a collection of m balanced boolean functions g1, . . . , gm, the long code test asks to dis-
tinguish between the following two cases:

1. The functions are all equal to the same long code

2. No variable is “influential” in more than a single function in the collection

This test is analysed by first proving that for a collecton of functions, if the t-dimensional
gowers uniformity is large, then there exists a variable i which is influential in at least two of the
functions (provided the functions are balanced). We can ensure that the functions (or long codes)
the verifier has to deal with are always balanced by an elegant (and quite standard) technique
called folding. Now, when the t-dimension gowers uniformity is small, by Theorem 9.1.9, the tests
are almost independent and hence in the soundness case, the acceptance probability is very low.
Hence, Algorithm 9.1.10 is a long code tester.
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9.1.4 The PCP Verifier

In this section, we will see how we can compose an outer verifier for NP obtained assuming the
unique games conjecture [Kho02] with an inner verifier to obtain a PCP verifier with the promised
query complexity. The following claim is due to a result of Khot and Regev [KR03]. Assuming the
UGC, for every integer q, and every γ > 0, there is a σ(q, γ) such that there is a reduction from
SAT to unique games on alphabets of size σ such that:

1. Every constraint involve q variables. A constraint is specified by the q variables, v1, . . . , vq
along with q permutations f1, . . . , fq on the alphabet. A constraint is said to be satisfied by
an assignment A to the variables if f1(A(v1)) = f2(A(v2)) = . . . = fq(A(vq)).

2. If the formula is satisfiable, there is an assignment that satisfies at least a 1 − γ fraction of
the constraints

3. A constraint is said to be satisfied weakly if fi(A(vi)) are not all different

4. If the formula is not satisfiable, then, no assignment satisfies more than a γ fraction even in
the weak sense defined above

The inner verifier is as follows. Given a q-ary unique game, the verifier expects the long code of
each constraint as the proof. Given a proof, the verifier picks a random constraint, say involving
v1, . . . , vq and permutations f1, . . . fq. Let h1, . . . , hq be the functions representing the supposed
long codes (after folding) of the assignment to the corresponding variables. The verifier runs a
γ-noisy hypergraph test on the functions h1 ◦ f1, . . . , hq ◦ fq (with the complete hypergraph on q
vertices).

The completeness of this verifier is 1−qγ. We look at the soundness of the verifier. Suppose the
verifier accepts with probability 1/22q−q−1+ε = 1/2k+ε, then a ε/2 fraction of the edges accept with
probability 1/2k + ε/2. For every variable, we assign it randomly, one of the influential coordinates
(or assign a random coordinate if there is no influential coordinate). Since a boolean function can
not have too many influential variables, each edge is weakly satisfied with a good probability. Thus,
taking expectation, we would expect a good fraction of the edges to be weakly satisfied. We fix γ and
ε depending on the guarantees we obtain on the influence of variables in the “good” constraints.
Wrapping up, we get a PCP verifier that has completeness arbitrarily close to 1 while having
soundness arbitrarily close to 1/2k. Thus, assuming UGC, NP = PCP

1−δ,w+1
2w +δ

(O(log n), w) for

every w of the form 2t − 1.
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[BS96] A. Balog and E. Szemerédi. A Statistical Theorem of set addition. Combinatorica,
14:263–268, 1996.

[BW04] I. R. Barak, B. and A. Wigderson. Extracting randomness using few independent
sources. FOCS, pages 384–393, 2004.

[BW05] K. G. S. R. S. B. Barak, B. and A. Wigderson. Simulating independence: new con-
structions of condensers, ramsey grahs, dispersers, and extractors. Proceedings of the
thirty-seventh annual ACM symposium on theory of computing, pages 1–10, 2005.

[BW06] R. A. S. R. Barak, B. and A. Wigderson. 2-source dispersers for sub-polynomial entropy
and Ramsey graphs beating the Frankl-Wilson construction. Proceedings from the thirty-
eighth annual ACM symposium on theory of computing, pages 671–680, 2006.

[Bes63] A. S. Besicovitch. The Kakeya Problem. The American Mathematical Monthly,
70(7):697–706, 1963.

[BLR93] M. Blum, M. Luby, and R. Rubinfeld. Self-testing/correcting with applications to
numerical problems. J. Comput. Syst. Sci., 47(3):549–595, 1993.

[BK06] G. A. Bourgain, J. and S. Konyagin. Estimates for the number of sums and products
and for exponential sums in fields of prime order. Journal of the London Mathematical
Society, 73(2):380–398, 2006.

73



74 BIBLIOGRAPHY

[Bou05] J. Bourgain. Estimation of certain exponential sums arising in complexity theory. In
C. R. Math. Acad. Sci. Paris, 340(9), pages 627–631, 2005.

[Bou07] J. Bourgain. On the construction of affine extractors. GAFA, 17:22–57, 2007.

[BG06] J. Bourgain and A. Gamburd. Growth and generation in SL2(Z/pZ). C. R. Acad. Sci.
Paris, 342(10):717–721, 2006.

[BT04] K. N. Bourgain, J. and T. Tao. A Sum-Product Estimate in Finite Fields, and Appli-
cations. GAFA, 14(1):27–57, 2004.

[CG88] B. Chor and O. Goldreich. Unbiased bits from sources of weak randomness and proba-
bilistic communication complexity. SIAM Journal of Computing, 17(2):230–261, 1988.

[Ele97] G. Elekes. On the Number of Sums and Products. Acta Arithmetica, 81:365–367, 1997.
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[GR05] A. Gabizon and R. Raz. Deterministic extractors for affine sources over large fields.
FOCS, pages 407–416, 2005.
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