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MONTRÉAL NOTES ON QUADRATIC FOURIER ANALYSIS

BEN GREEN

Abstract. These are notes to accompany four lectures that I gave at the School on

additive combinatorics, held in Montréal, Québec between March 30th and April 5th
2006.

My aim is to introduce “quadratic fourier analysis” in so far as we understand it at
the present time. Specifically, we will describe “quadratic objects” of various types and
their relation to additive structures, particularly four-term arithmetic progressions.

I will focus on qualitative results, referring the reader to the literature for the many
interesting quantitative questions in this theory. Thus these lectures have a distinctly
“soft” flavour in many places.

Some of the notes cover unpublished work which is joint with Terence Tao. This
will be published more formally at some future juncture.

1. Lecture 1

Topics to be covered:

• Introduction. The finite field philosophy.
• Review of notation and basic properties of the Fourier transform
• Counting 3- and 4-term arithmetic progressions using the Gowers U2- and U3-

norms: generalised von Neumann theorems.
• Inverse theorem for the Gowers U2-norm.
• The “quadratic” example for the Gowers U3-norm.
• Brief revision of key results from additive combinatorics.

What is “quadratic Fourier analysis?”. The aim of this series of lectures is to give
a reasonably detailed answer to that question, at least in so far as is possible at the
present time.

It would, however, be presumptious to suppose that any reader would venture to the
end of these notes in order to discover the meaning of the title, so we begin with a very
brief introduction.

Fourier analysis, or “linear” Fourier analysis as we shall call it in these notes, is a multi-
faceted subject. One rather small part of it is concerned with solving linear equations.
Two examples of theorems which may be proven using some kind of study of the Fourier
transform are
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2 BEN GREEN

• (Chowla/van der Corput) There are infinitely many 3-term arithmetic progres-
sions of primes.

• (Roth) Let δ > 0 be fixed. Then if N > N0(δ) is sufficiently large, and sub-
set A ⊆ {1, . . . , N} with size at least αN contains three distinct elements in
arithmetic progression.

Note that an arithmetic progression of length three is defined by a single linear equation
x1 + x3 = 2x2.

Standard Fourier analysis fails in many situations where we are interested in a pair of
linear equations. The natural example here is a progression of length four, which is
defined by the equations x1 + x3 = 2x2, x2 + x4 = 2x3. This is the situation where
quadratic Fourier analysis is appropriate. Thus by developing the methods that we will
talk about in these lectures, it is possible to prove

• (Green-Tao) There are infinitely many 4-term arithmetic progressions of primes.
• (Szemerédi) Let δ > 0 be fixed. Then if N > N0(δ) is sufficiently large, and

subset A ⊆ {1, . . . , N} with size at least αN contains three distinct elements in
arithmetic progression.

In fact we will not prove either of these theorems in this course, since we will be working
in a model setting. A common theme in additive combinatorics is the consideration of
finite field models. A full discussion may be found in [12], but the basic idea is as
follows. For many problems in additive combinatorics one is interested in the interval
{1, . . . , N}. However, it is often convenient to work in a group, and so one often uses
various technical devices in order to place the problem at hand in Z/NZ. Once this
is done, it is often easy to formulate an analogous question inside an arbitrary finite
abelian group G. In most applications that we know of, this more general problem is
scarcely harder to solve than in the specific case G = Z/NZ. However, there is a family
of groups, namely the groups Fn

p where p is a small prime, in which it can be relatively
easy to work. Techniques used to prove theorems in this setting can often be used to
guide proof techniques in Z/NZ, which provide theorems of actual number theoretic
interest.

In this series of lectures we will focus almost exclusively on the group G = Fn
5 . I am

rather fond of the prime 5 since it is the smallest for which the notion of a 4-term
arithmetic progression is sensible.

We will conclude with a discussion of the general case at the end, in as much detail
as time permits. It turns out that the theory for Z/NZ is surprisingly rich, and there
are strong connections with the ergodic theory techniques that will be discussed in the
lectures of Bryna Kra.

Notation. Opinion seems to be converging in additive combinatorics about what con-
stitutes the “standard” notation, and I will endeavour to keep to these norms. If X is
any finite set and f : X → C is any function then we write

Ex∈Xf(x) := |X|−1
∑

x∈X

f(x).

This means that it is often possible to avoid worrying about normalising factors.
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Unless specified otherwise, we will set G := Fn
5 and write N := |G| = 5n. Any character

on G (that is, homomorphism γ : G → C×) has the form x 7→ ωrT x, where ω := e2πi/5

and r ∈ Fn
5 is a vector. We write Ĝ for Fn

5 when considered as the group of characters
in this way.

If f : G→ C is any function then we define its Fourier transform f̂ : Ĝ→ C by

f̂(r) := Ex∈Gf(x)ωrT x.

We distinguish the trivial character corresponding to r = 0, which takes the value 1 for
all x ∈ G. If f, g : G→ C are two functions then we define the convolution f ∗g : G→ C

by
(f ∗ g)(x) := Ey∈Gf(x)g(y − x).

Note that when working on G we always use the Haar measure which assigns weight

|G|−1 to any x ∈ G. When working on Ĝ we use the counting measure which assigns

weight 1 to every r ∈ Ĝ. These measures are dual to one another, which in practice
means that in formulæ such as those in Lemma 1.1 below one can simply write Ex∈G

and
∑

r∈Ĝ, and thereafter be untroubled by normalising factors.

When we talk of Lp norms, these will always be taken with respect to the appropriate
underlying measure. Thus

‖f‖1 := Ex∈G|f(x)|,
whereas

‖f̂‖4 :=
(∑

r∈Ĝ

|f̂(r)|4
)1/4

.

I will be assuming familiarity with the basic properties of the Fourier transform, which
are all straightforward consequences of the orthogonality relations

∑

r

ωrT x =

{
N if x = 0
0 otherwise

and

Ex∈Gω
rT x =

{
1 if r = 0
0 otherwise

Lemma 1.1 (Basic properties of the Fourier transform). Suppose that f, g : G→ C are

any two functions. Then

(1) We have f̂(0) = Ex∈Gf(x). For any r we have |f̂(r)| 6 ‖f‖1.

(2) (Parseval identity) We have

Ex∈Gf(x)g(x) =
∑

r∈Ĝ

f̂(r)ĝ(r).

In particular ‖f‖2 = ‖f̂‖2.

(3) (Inversion) We have

f(x) =
∑

r∈Ĝ

f̂(r)ω−rT x.

(4) (Convolution) We have (f ∗ g)∧ = f̂ ĝ.
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The last item here illustrates how we will notate the Fourier transform of expressions

E for which it would be too cumbersome to write Ê.

Let us now start with the main business of these lectures. Let G be a finite abelian
group with order N which is coprime to 6, and let f1, . . . , f4 : G→ [−1, 1] be functions.
In these notes a central rôle will be played by the multilinear operators Λ3 and Λ4,
defined by

Λ3(f1, f2, f3) := Ex,df1(x)f2(xd)f3(x+ 2d)

and

Λ4(f1, f2, f3, f4) := Ex,df1(x)f2(x+ d)f3(x+ 2d)f4(x+ 3d).

Thus Λ3 counts the number of 3-term arithmetic progressions “along the fi”, whilst Λ4

counts the number of 4-term progressions.1

When the functions fi are characteristic functions, the operators Λ3 and Λ4 may be
interpreted combinatorially.

Observation 1.2. Suppose that fi = 1Ai
, where Ai ⊆ G is a set. Then Λ3(1A1, 1A2, 1A3)

is equal to N−2 times the number of triples (a1, a2, a3) ∈ A1 × A2 × A3 which are

in arithmetic progression. Similarly, Λ4(1A1 , 1A2, 1A3, 1A4) is equal to N−2 times the

number of quadruples (a1, a2, a3, a4) ∈ A1 × A2 × A3 × A4 which are in arithmetic

progression.

There are certainly many situations in which one might be interested in counting the
number of 3- or 4-term progressions inside a set. To do this, we normally proceed as
follows. If A ⊆ G is a set with size αN , then write fA := 1A − α. This is called the
balanced function of A, and it has expected value 0.

Lemma 1.3 (Balanced function decomposition). Suppose that A1, . . . , A4 ⊆ G, and

that |Ai| = αiN . Then we have

Λ3(1A1 , 1A2, 1A3) = α1α2α3 + (seven other terms), (1.1)

where each of the seven terms has the form Λ3(g1, g2, g3) where some gi is equal to fAi
.

Similarly

Λ4(1A1 , 1A2, 1A3, 1A4) = α1α2α3α4 + (fifteen other terms), (1.2)

where each of the fifteen terms has the form Λ4(g1, g2, g3, g4) where some gi is equal to

fAi
.

Let us specialise to the case A1 = A2 = A3 = A4 = A for simplicity, and write
|A| = αN . What do we “expect” Λ3(1A, 1A, 1A) and Λ4(1A, 1A, 1A, 1A) to be? It is not
hard to see that for a “random” set A, generated by tossing a coin which comes up
heads with probability α to decide whether each x ∈ G lies in A, the expected value
of Λ3(1A, 1A, 1A) is approximately α3, whilst the expected value of Λ4(1A, 1A, 1A, 1A)
is approximately α4. Note that these quantities are exactly the “main terms” in the
expansions of Lemma 1.3. It is thus reasonable to suggest that the other seven terms

1Whilst we will talk exclusively about 3- and 4-term arithmetic progressions, the reader should note
that much of what we have to say may be adapted to more general problems where it is of interest to
count the number of solutions to a linear equation, or to a pair of linear equations.
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in (1.1) measure some kind of “non-uniformity” of A relevant to 3-term progressions,
whilst the fifteen terms in (1.2) do the same for 4-term progressions.

Let us make a preliminary definition.

Definition 1.4 (Uniformity along progressions). Let A ⊆ G be a set with |A| = αN ,
and let fA := 1A−α be the balanced function of A. Let δ ∈ (0, 1) be a parameter. Then
we say that A exhibits δ-uniformity along 3-term progressions if whenever we have three
functions g1, g2, g3 → [−1, 1], at least one of which is equal to fA, then

|Λ3(g1, g2, g3)| 6 δ.

We define non-unifomity along 4-term progressions similarly.

Remark. It is not, at first sight, obvious that the are any sets which are uniform along
progressions.

Lemma 1.5. Suppose that A ⊆ G is a set with |A| = αN . If A is δ-uniform along

3-term progressions, then

|Λ3(1A, 1A, 1A) − α3| 6 7δ.

If A is δ-uniform along 4-term progressions, then

|Λ4(1A, 1A, 1A, 1A) − α4| 6 15δ.

Proof. Immediate consequence of Lemma 1.3.

The following question will be a recurring theme of these lectures:

Question 1.6. Suppose that A is not δ-uniform along 3- or 4-term progressions. Can
we say something “useful” about A?

Of course, the notion of “useful” is a subjective one. The reader may assume, however,
that the mere failure of Definition 1.4 does not constitute “useful”. We will see that if
A is not uniform along 3-term progressions, then it exhibits “linear” behaviour, whilst
functions which are not uniform along 4-term progressions are somehow “quadratic”.

Formulating, proving, and using statements of this type is our main goal in these notes.

Question 1.6 may be answered very satisfactorily using Fourier analysis. The key tool
is the following simple lemma, whose proof is an amusing exercise using the basic prop-
erties of the Fourier transform.

Lemma 1.7. Let f1, f2, f3 : G→ R be any three functions. Then

Λ3(f1, f2, f3) =
∑

r

f̂1(r)f̂2(−2r)f̂3(r)

Proposition 1.8 (Inverse result for 3-term progressions, I). Suppose that A is not δ-

uniform along 3-term progressions. Then ‖f̂A‖∞ > δ, that is to say there is some r ∈ Ĝ

such that |f̂A(r)| > δ.

Proof. Suppose that
|Λ3(g1, g2, fA)| > δ
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for some functions g1, g2 : G→ [−1, 1] (the analysis of the other two cases, when g1 = fA

or g2 = fA, is more-or-less identical). We have, by Lemma 1.7 the formula

Λ3(g1, g2, fA) =
∑

r

ĝ1(r)ĝ2(−2r)f̂A(r).

Thus by Cauchy-Schwarz and Parseval’s identity we infer that

δ 6 |
∑

r

ĝ1(r)ĝ2(−2r)f̂A(r)| 6 ‖f̂A‖∞‖ĝ1‖2‖ĝ2‖2 6 ‖f̂A‖∞.

This is a very clean result, but the method of proof (appealing to a formula in Fourier
analysis) has not, so far, proved amenable to generalisation. One way to generalise an
argument is to first try and find a more longwinded, less natural looking approach and
try and generalise that. We will describe such an approach now, though we hope that
any reader looking back on this section later on will not consider it so unnatural. Note
that the result is the same as Proposition 1.8, but the bound is slightly worse.

Proposition 1.9 (Inverse result for 3-term progressions, II). Suppose that A is not

δ-uniform along 3-term arithmetic progressions. Then ‖f̂A‖∞ > δ2.

Proof. Let us first observe that

Λ3(g1, g2, fA) = Ey1,y2g1(−y1)g2(
1
2
y2)fA(y1 + y2).

This is a simple reparametrisation. Applying the Cauchy-Schwarz inequality, we have

|Λ3(g1, g2, fA)|2 6 Ey2 |Ey1g1(−y1)fA(y1 + y2)|2

= Ey1,y′
1,y2

fA(y1 + y2)fA(y′1 + y2)g1(−y1)g1(−y′1).
Applying Cauchy-Schwarz again, we have

|Λ3(g1, g2, fA)|4 6 Ey1,y′
1
|Ey2fA(y1 + y2)fA(y′1 + y2)|2

= Ey1,y′
1,y2,y′

2
fA(y1 + y2)fA(y′1 + y2)fA(y1 + y′2)fA(y′1 + y′2). (1.3)

This last expression is called the (fourth power of) the Gowers U2-norm of fA. Thus
we define

‖fA‖4
U2 := Ey1,y′

1,y2,y′
2
fA(y1 + y2)fA(y′1 + y2)fA(y1 + y′2)fA(y′1 + y′2). (1.4)

It is often useful to write this in the alternative form

‖fA‖4
U2 = Ex,h1,h2fA(x)fA(x+ h1)fA(x+ h2)fA(x+ h1 + h2).

It is not hard to show that ‖·‖U2 is a norm using the Cauchy-Schwarz inequality several
times. We will not make much use of this fact, and refer the reader to [9] for the proof.

Note that (1.3) implies that if |Λ3(g1, g2, fA)| > δ then ‖fA‖U2 > δ.

What now? Another way to see that ‖ · ‖U2 is a norm is to observe that

‖f‖4
U2 = ‖f ∗ f‖2

2 = ‖(f ∗ f)∧‖2
2 = ‖f̂‖4.

Thus if ‖fA‖U2 > δ then we have

δ4
6 ‖f̂A‖4 6 ‖f̂A‖2

∞‖f̂A‖2
2 6 ‖f̂A‖2

∞,



MONTRÉAL NOTES ON QUADRATIC FOURIER ANALYSIS 7

which concludes the proof in the case that |Λ3(g1, g2, fA)| > δ. Again, the cases when
fA = g1 or g2 can be dealt with very similarly, and are left to the reader; the parametri-
sations leading to (1.3) must be modified slightly.

At the moment, it is hard to see what has been gained here. To prove the result, we
still had to fall back on a formula of Fourier analysis, and furthermore the bound we
obtain is worse that in Proposition 1.8.

We may summarise the argument in Proposition 1.9 as follows, giving the two distinct
parts a name.

• (Generalised von Neumann theorem) The operator Λ3 is controlled by the Gow-
ers U2-norm. Specifically for any three functions f1, f2, f3 : G → [−1, 1] we
have

|Λ3(f1, f2, f3)| 6 inf
i=1,2,3

‖fi‖U2 .

• (Gowers inverse theorem) If the Gowers U2-norm of a function f : G → [−1, 1]
is large, f must have a large Fourier coefficient:

‖f‖U2 > δ ⇒ ‖f̂‖∞ > δ2.

We note that the Gowers inverse theorem is necessary and sufficient. Indeed if ‖f̂‖∞ > δ

then clearly ‖f̂‖4 > δ.

This division of labour into two parts turns out to be the natural way to proceed for
Λ4 (and higher operators). The first part of the argument (the definition of the Gowers
norm and the Generalised von Neumann theorem) goes through somewhat straightfor-
wardly. The second part (the Gowers inverse theorem) does not, since we do not know

of a formula analagous to ‖f‖U2 = ‖f̂‖4.

Definition 1.10 (Gowers U3-norm). Let f : G→ [−1, 1] be a function. Then we define

‖f‖8
U3 :=Ey1,y2,y3

y′
1,y′

2,y′
3

f(y1 + y2 + y3)f(y′1 + y2 + y3)f(y1 + y′2 + y3)f(y1 + y2 + y′3)×

× f(y′1 + y′2 + y3)f(y′1 + y2 + y′3)f(y1 + y′2 + y′3)f(y′1 + y′2 + y′3)

= Ex,h1,h2,h3∈Gf(x)f(x+ h1)f(x+ h2)×
× f(x+ h3)f(x+ h1 + h2)f(x+ h1 + h3)f(x+ h2 + h3)f(x+ h1 + h2 + h3).

Note that this is a kind of sum of f over 3-dimensional parallelepipeds. We omit the
proof that ‖f‖U3 is actually a norm (see [9]).

Proposition 1.11 (Generalised von Neumann theorem for 4-term APs). Let f1, . . . , f4 :
G→ [−1, 1] be any four functions. Then we have

|Λ4(f1, . . . , f4)| 6 inf
i=1,...,4

‖fi‖U3.

In particular if A is not δ-uniform along four-term progressions then ‖fA‖U3 > δ.

Proof. The idea is the same as in Proposition 1.9. Here, we find a suitable reparameti-
sation of Λ4(f1, . . . , f4), and then apply the Cauchy-Schwarz inequality three times. A
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“suitable reparametrisation” turns out to be

Λ4(f1, f2, f3, f4)

= Ey1,y2,y3∈Gf1(−1
2
y2 − 2y3)f2(

1
3
y1 − y3)f3(

2
3
y1 + 1

2
y2)f4(y1 + y2 + y3). (1.5)

For the rest of this section let b() denote any function bounded by 1. Different occur-
rences of b may denote different functions. The Cauchy-Schwarz inequality implies that

|Ex∈XEy∈Y b(x)f(x, y)| 6 |Ex∈XEy(0),y(1)∈Y f(x, y(0))f(x, y(1))|1/2. (1.6)

We apply this three times. At the first application we take X := {y2, y3} and Y = {y1},
and put the function f1 inside the b() term. We now have variables y

(0)
1 , y

(1)
1 , y2, y3.

Now set X := {y(0)
1 , y

(1)
1 , y3}, Y := {y2} and arrange for everything involving f2 to

be placed in the b() term. We now have variables y
(0)
1 , y

(1)
1 , y

(0)
2 , y

(1)
2 , y3. For the final

application of Cauchy-Schwarz setX := {y(0)
1 , y

(1)
1 , y

(0)
2 , y

(1)
2 } and Y := {y3}, and arrange

for everything involving f3 to be placed in the b() term. Note that at this point we
have eliminated everything involving f1, f2, f3 and have

|Ey1,y2,y3f1(−1
2
y2 − 2y3)f2(

1
3
y1 − y3)f3(

2
3
y1 + 1

2
y2)f4(y1 + y2 + y3)|

6 |E
y
(0)
1 ,y

(1)
1 ,y

(0)
2 ,y

(1)
2 ,y

(0)
3 ,y

(1)
3
f4(y

(0)
1 + y

(0)
2 + y

(0)
3 )f4(y

(1)
1 + y

(0)
2 + y

(0)
3 ) × . . .

· · · × f4(y
(1)
1 + y

(1)
2 + y

(1)
3 )|1/8.

The right-hand side here is precisely ‖f4‖U3 .

To show that Λ(f1, f2, f3, f4) is bounded by the other expressions ‖fi‖U3, one may
proceed similarly. We leave the details to the reader.

We now come to the central question of quadratic Fourier analysis: when is ‖f‖U3 large?
The first key observation is that the answer is not simply the same as for the U2-norm.

Lemma 1.12 (Key example). There is a function f : G→ C with ‖f‖∞ 6 1 such that

‖f‖U3 = 1, but such that ‖f̂‖∞ 6 N−1/2.

Proof. Before embarking on the proof, we must remark that ‖·‖U3 has only been defined
for real-valued functions thus far. To define it for complex-valued functions, one must
take complex conjugates of the terms f(x+h1), f(x+h2), f(x+h3) and f(x+h1+h2+h3).
The extension to complex-valued functions facilitates the discussion of examples, but is
not otherwise essential in the theory. Keeping track of complex conjugates is rather a
tedious affair, so will endeavour to work with real functions whenever possible.

Set f(x) = ωxT x. We have

‖f‖8
U3 = Ex,h1,h2,h3ω

xT x−(x+h1)T (x+h1)−···−(x+h1+h2+h3)T (x+h1+h2+h3) = 1.

This can be seen by intelligent direct computation (or even by näıve direct computation);
the phase vanishes since it is essentially the third derivative of a quadratic.

To evaluate ‖f̂‖∞, observe that we have

|Ex∈Gω
xT x+rT x| = |

n∏

j=1

Exj∈F5ω
x2

j+rjxj | = 5−n/2.
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This concludes the proof of the lemma.

We conclude this first lecture by stating three key results in additive combinatorics
which we will need in the second lecture. These results will all be discussed and proved
in other lectures in this school. In these results, 0 < c < 1 < C are absolute constants.

Proposition 1.13 (The Balog-Szemerédi-Gowers theorem). Let G be an abelian group,

and suppose that A ⊆ G is a set with |A| = n. Suppose that there are at least δn3

additive quadruples in A, that is to say solutions to a1 + a2 = a3 + a4. Then there is a

subset A′ ⊆ A with |A′| > cδC |A| such that |A′ + A′| 6 Cδ−C |A′|.

This result will be the subject of Antal Balog’s lecture at the school.

Proposition 1.14 (Freiman’s theorem in finite fields). Let p be a prime, and write Fn
p

for the n-dimensional vector space over the finite field with p elements. Suppose that

A ⊆ Fn
p is a set with |A + A| 6 K|A|. Then there is a subspace H 6 Fn

p such that

A ⊆ H and for which we have the bound |H| 6 pCKC |A|.

This result will be discussed by Imre Ruzsa.

Exercises. For the reader wishing to familiarise herself with the Gowers norms, we offer a handful of exercises.
Discussions pertinent to these exercises may be found in the papers [9, 17, 18].

1. Let k > 2 be any integer, and define the Gowers Uk-norm by

‖f‖2k

Uk := Ex,h1,...,hk∈G

∏

ω∈{0,1}k

f(x + ω · h). (1.7)

Show that ‖ · ‖Uk is a norm. (Hint: first define the Gowers inner product 〈fω〉ω∈{0,1}k for 2k functions

(fω)ω∈{0,1}k by modifying (1.7). Then use several applications of the Cauchy-Schwarz inequality to prove the
Gowers-Cauchy-Schwarz inequality

|〈fω〉ω∈{0,1}k | 6
∏

ω

‖fω‖Uk .

Finally, use this to prove the triangle inequality for ‖f‖Uk ).

2. Prove that the Gowers Uk-norms are nested :

‖f‖U2 6 ‖f‖U3 6 . . . .

3. By generalising Lemma 1.12, show that the Gowers norms are strictly nested in the following strong sense.
For any k > 3 there is ck > 0 such that the following is true. For any N , there is a group G with |G| > N and
a function f : G → C with ‖f‖∞ = ‖f‖Uk = 1 such that ‖f‖Uk−1 ≪ N−ck .

4. We noted that the U2 inverse theorem is an if and only if statement. That is, if f is a bounded function with

|Exf(x)ωrT x| > δ for some r then f has large U2-norm. Prove this without using the fact that ‖f‖U2 = ‖f̂‖4.
(Hint : use the Gowers-Cauchy-Schwarz inequality of Ex. 1.)

5. Let G = F
n
5 . Suppose that

|Ex∈Gf(x)ωxT Mx+rtx| > δ.

for some matrix M and vector r. Prove that ‖f‖U3 > δ. (Hint : apply the Gowers-Cauchy-Schwarz inequality
again. You will need a generalisation which covers complex-valued functions; this can be obtained by inserting
appropriate complex conjugate symbols.

6. (Generalising the generalised von Neumann theorem) Show that

|Λk(f1, . . . , fk)| 6 inf
i=1,...,k

‖fi‖Uk−2 .
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Further reading. This material was originally laid out in Gowers [9], though the notation was slightly different
and (of course) the Gowers norms were not named as such! Various expositions of the material may be found
in papers by one or both of Terry Tao and myself. See, for example, [17, 18].

A very general version of the generalised von Neumann theorem (linking systems of s equations in t unknowns
to the Us+1 norm) may be found in our forthcoming paper [20], and an even more general version (applying to
functions which are not necessarily bounded by 1) may be found in [21].

Analogues of much of the material in this lecture were discovered in ergodic theory about 20 years ago. For
more on this fascinating connection, the lectures of Kra at this school will be illuminating.

The Balog-Szemerédi-Gowers theorem was originally proved by Gowers [8], and is a quantitative version of the
earlier result of Balog and Szemerédi [1]. A version with a good value of the exponent C may be found in
[5]. This material is also covered in my notes [14]. The Plünnecke–Ruzsa inequality was obtained in [25] and
afforded an elegant proof by Ruzsa in [26]. The original reference for Proposition 1.14 is the paper [28] by Imre
Ruzsa. For self-contained notes on Plünnecke’s inequality and Freiman’s theorem, see [13]. For a discussion of
all of the material in this lecture (and indeed much of the material in the other lectures) see the forthcoming
book [34].

2. Lecture 2

Topics to be covered:

• The inverse theorem for the U3-norm on Fn
5 .

Some notation. Let E,E ′ be real-valued expressions. We will write E ≫δ E
′ to mean

that there is some function c(δ) > 0 such that E > c(δ)E ′. There is nothing particularly
unusual about this notation, but one aspect of the manner in which we shall apply it is
somewhat subtle. When we write, for example, “let N ≫δ 1”, we mean “let N > c(δ),
where c : R+ → R+ is some function which may be chosen so that later arguments
work”. We do not (of course) mean that an arbitrary function c may be chosen.

We will also, on occasion, use the notation Oδ(1) to denote a finite quantity which
depends only on δ.

We have deliberately chosen topics within the subject of quadratic Fourier analysis for
which bounds are unimportant, since these are the topics most allied to the “infinitary”
ideas which will feature in the lectures of Kra and Tao at this school. It is quite
reasonable to think of there being just two types of quantity in these lectures: finite

quantities which depend only on δ, and infinite quantities which depend on the size of
Fn

5 .

Let us recall the main question we are trying to address.

Question 2.1 (Gowers inverse question). Suppose that f : G → [−1, 1] is a function
and that ‖f‖U3 > δ. What can we say about f?

It turns out to be much easier to address this question in a finite field setting such as
G = Fn

5 . We showed in the exercises to Lecture 1 that if f correlates with a quadratic

phase ωxT Mx+rT x then f has large U3 norm. It turns out that the converse is also true,
though this is much harder to prove and will be our main goal in this lecture.

Proposition 2.2 (Inverse theorem for the U3-norm on Fn
5 ). Suppose that f : G →

[−1, 1] is a function for which ‖f‖U3 > δ. Then there is a matrix M ∈ Mn(F5) and a
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vector r ∈ Fn
5 so that

|Ex∈Gf(x)ωxT Mx+rT x| ≫δ 1.

Remark. Write E := supr,M |Ex∈Gf(x)ωxT Mx+rT x|. It is not hard to check that the proof

we give would allow one to replace E ≫δ 1 by some bound of the form E > exp(−Cδ−C).
For our later application, we will merely need some lower bound of the form E ≫δ 1.
There are other applications where bounds are important – see the further remarks for
a discussion.

To prove Proposition 2.9 we will essentially follow the approach of Gowers [8]. We will,
however, employ a slight twist which is essentially due to Samorodnitsky [29].

Definition 2.3 (Derivatives). Suppose that f : G → R is a function. Then for any
h ∈ G we define the function ∆(f ; h) by

∆(f ; h)(x) := f(x)f(x− h).

Proposition 2.4 (Samorodnitsky’s identity). Let f : G → R be any function. Then

we have∑

r1+r2=r3+r4

Eh1+h2=h3+h4|∆(f ; h1)
∧(r1)|2 . . . |∆(f ; h4)

∧(r4)|2 = Eh‖∆(f ; h)∧‖8
8. (2.1)

Proof. The idea of the proof is simple: we show that both sides are equal to
∑

(c1,...,c8,c′1,...,c′8)∈C

f(c1) . . . f(c8)f(c′1) . . . f(c′8), (2.2)

where the sum is over all configurations C with

c1 + · · · + c4 = c5 + · · ·+ c8

and
c′1 − c1 = · · · = c′8 − c8.

To show that the RHS of (2.1) is equal to (2.2) is the easier of the two tasks to accom-
plish. One notes that

‖∆(f ; h)∧‖8
8 = Ex|∆(f ; h) ∗ ∆(f ; h) ∗ ∆(f ; x) ∗ ∆(f ; h)(x)|2,

by Parseval’s identity and the fact that (f ∗ g)∧ = f̂ ĝ. That the expectation of this over
h is equal to (2.2) follows by expansion.

To prove that the LHS of (2.1) is equal to (2.2), it is convenient to introduce some

notation. If ψ : Ĝ→ C is a function then we define ψ∨ : G→ C by

ψ∨(x) :=
∑

r∈Ĝ

ψ(r)ω−rT x.

Note that the inversion formula is equivalent to

(f̂)∨ = f. (2.3)

If ψ, φ : Ĝ→ C are two functions then we define

ψ ∗ φ(r) :=
∑

s∈Ĝ

ψ(s)φ(r − s)
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and note the formula
(ψ ∗ φ)∨ = ψ∨φ∨.

It follows from these facts and Parseval’s identity that for any four functions g1, . . . , g4 :
G→ C we have∑

r1+r2=r3+r4

ĝ1(r1)ĝ2(r2)ĝ3(r3)ĝ4(r4) =
∑

r

ĝ1 ∗ ĝ2(r)ĝ3 ∗ ĝ4(r) = Exg1(x)g2(x)g3(x)g4(x).

(2.4)
We apply this with

gi = ∆(f ; hi) ∗ ∆(f ; hi)
◦,

where we have defined f ◦(x) := f(−x). Noting that (f ◦)∧ = f̂ , we see that

ĝi(r) = |∆(f ; hi)
∧(r)|2.

Substituting into (2.4), we see that the LHS of (2.1) is equal to

Eh1+h2=h3+h4Ex

4∏

i=1

∆(f ; hi) ∗ ∆(f ; hi)
◦(x).

Expanding out, we recover (2.2) once more.

Using this identity, we can prove the following crucial result, which provides the first
link between functions f with large U3-norm and quadratic phases. It states that the
derivatives ∆(f ; h) obey a sort of weak linearity property.

Proposition 2.5 (Gowers). Let f : G → [−1, 1] be a function, and suppose that

‖f‖U3 > δ. Suppose that |G| ≫δ 1. Then there is a function φ : G→ Ĝ such that

(1) |∆(f ; h)∧(φ(h))| ≫δ 1 for all h ∈ S, where |S| ≫δ |G|;
(2) There are ≫δ |G|3 quadruples (s1, s2, s3, s4) ∈ S4 such that s1 + s2 = s3 + s4 and

φ(s1) + φ(s2) = φ(s3) + φ(s4).

Proof. Set N := |G|. One may easily check that

‖f‖8
U3 = Eh‖∆(f ; h)‖4

U2.

Recalling that the U2-norm is the L4 norm of the Fourier transform, we thus have

‖f‖8
U3 = Eh‖∆(f ; h)∧‖4

4.

Now Hölder’s inequality and Parseval’s identity imply that for any h we have

‖∆(f ; h)∧‖4
4 6 ‖∆(f ; h)∧‖4/3

2 ‖∆(f ; h)∧‖8/3
8 6 ‖∆(f ; h)∧‖8/3

8 .

Another application of Hölder yields

Eh‖∆(f ; h)∧‖8/3
8 6

(
Eh‖∆(f ; h)∧‖8

8

)1/3
.

Combining these observations, we conclude that

Eh‖∆(f ; h)∧‖8
8 > δ24.

Samorodnitsky’s identity then allows us to conclude that
∑

r1+r2=r3+r4

Eh1+h2=h3+h4|∆(f ; h1)
∧(r1)|2 . . . |∆(f ; h4)

∧(r4)|2 > δ24. (2.5)
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To each h ∈ G, we associate the set Φ(h) of characters r for which |∆(f ; h)∧(r)| > δ50. It
is immediate from Parseval’s identity that |Φ(h)| 6 δ−100 for all h. Now the contribution
to (2.5) from those hi, ri for which r1 /∈ Φ(h1) (say) is bounded by

δ100
∑

r2,r3,r4

Eh2,h3,h4|∆(f ; h2)
∧(r2)|2|∆(f ; h3)

∧(r3)|2|∆(f ; h4)
∧(r4)|2 6 δ100.

It follows that∑

r1+r2=r3+r4

Eh1+h2=h3+h41r1∈Φ(h1)|∆(f ; h1)
∧(r1)|2 . . . 1r4∈Φ(h4)|∆(f ; h4)

∧(r4)|2 > δ24/2,

and so in particular there are at least δ24N3/2 additive octuples (h1, r1, . . . , h4, r4) such
that h1 + h2 = h3 + h4, r1 + r2 = r3 + r4 and ri ∈ Φ(hi) for i = 1, . . . , 4. Since N is
so large, at least δ24N3/4 of these are proper, by which we mean that h1, . . . h4 are all
distinct.

Let S be the set of all h for which Φ(h) 6= ∅. It is easy to see that |S| ≫δ |G|, since
otherwise there could not be enough additive octuples. For each h ∈ S, pick an element
φ(h) uniformly at random from Φ(h), and suppose that these choices are independent
for different h. For each proper additive octuple (h1, r1, . . . , h4, r4), the probability that
it fits φ, that is to say that ri = φ(hi) for i = 1, 2, 3, 4, is precisely 1/|Φ(h1)| . . . |Φ(h4)|.
This is ≫δ 1. It follows that the expected number of additive octuples which fit φ is
≫δ |G|3. In particular there is some specific choice of φ for which ≫ |G|3 additive
octuples fit φ.

It takes a few seconds to realise that we have, in fact, proved the result: An octuple which
fits φ is precisely an additive quadruple of points h1, . . . , h4 such that φ(h1) + φ(h2) =
φ(h3) + φ(h4) and φ(hi) ∈ Φ(hi), that is to say |∆(f, h)∧(φ(h))| > δ50.

We have made a crucial step: assuming that ‖f‖U3 was large, we deduced that the
derivative of f has a certain weak linearity property. We must now work with this
property and make it somewhat stronger.

Proposition 2.6 (From weak linearity to linearity). Suppose that φ : G → Ĝ is a

function with the property in Proposition 2.5 (2), that is to say there is some set S ⊆ G
with |S| ≫δ |G| such that there are ≫δ |G|3 additive quadruples (s1, s2, s3, s4) such that

s1 + s2 = s3 + s4 and φ(s1) + φ(s2) = φ(s3) + φ(s4). Then there is some linear function

ψ(x) = Mx + b, where M ∈ Mn(F5) and b ∈ Fn
5 , such that φ(x) = ψ(x) for ≫δ |G|

values of x ∈ S.

Proof. The first step is to observe that the conclusion of Proposition 2.5 may be
rephrased using the graph

Γ := {(h, φ(h)) : h ∈ S},
which is a subset of G× Ĝ. Statement (2) of Proposition 2.5 is just the same as saying
that Γ has ≫δ |G|3 additive quadruples. It follows from the Balog-Szemerédi-Gowers
theorem that there is a subset Γ′ ⊆ Γ with

|Γ′| ≫δ |Γ| ≫δ |G|
and

|Γ′ + Γ′| ≪δ |Γ′|.
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Define S ′ ⊆ S by
Γ′ := {(h, φ(h)) : h ∈ S ′},

and note that
|S ′| ≫δ |G|.

Now we may identify G× Ĝ with Fn
5 ×Fn

5 and hence with F2n
5 . From Ruzsa’s finite field

analogue of Freiman’s theorem, it follows that there is some subspace H 6 Fn
5 × Fn

5 ,

|H| ≪δ |G|, (2.6)

such that Γ′ ⊆ H .

Consider the map π : H → G onto the first factor. The image of this linear map
contains S ′, and so from (2.6) and the lower bound for |S ′| we see that

dimF5 ker π ≪δ 1.

It follows that we may foliate H into ≪δ 1 cosets of some subspace H ′, such that π is
injective on each of these cosets. By averaging, we see that there is some x such that

|(x+H ′) ∩ Γ′| ≫δ |G|.
Set Γ′′ := (x + H ′) ∩ Γ′, and define S ′′ ⊆ S ′ accordingly. Then π|x+H′ is an affine

isomorphism onto its image V , which means that there is an affine linear map ψ : V → Ĝ
such that (s′′, ψ(s′′)) ∈ Γ′′ for all s′′ ∈ S ′′, that is to say ψ(s′′) = φ(s′′) for all s′′ ∈ S ′′.

Let us put this last result together with Proposition 2.5.

Corollary 2.7 (Linearity of the derivative). Suppose that f : G→ [−1, 1] is a function

with ‖f‖U3 > δ. Then there is some M ∈ Mn(F5) and some b ∈ Fn
5 such that

Eh|∆(f ; h)∧(Mh + b)|2 ≫δ 1.

Proof. Recall that φ is defined for h ∈ S, where

|S| ≫δ |G|
and that it has the property that

|∆(f ; h)∧(φ(h))| ≫δ 1

for all h ∈ S. We proved in Proposition 2.6 that there is an affine linear function
ψ(h) = Mh+ b such that φ(h) = ψ(h) for all h ∈ S ′′, where |S ′′| ≫δ |G|. The corollary
follows immediately.

Corollary 2.7 shows that the derivative of a function f with large U3 norm correlates
with a linear function. Recall that our aim is to show that f correlates with a quadratic
function x 7→ ωxT Mx+rT x. This latter function does have linear derivative, but this
derivative is symmetric. For that reason we need the following lemma, which states
that the matrix M in Corollary 2.7 is automatically nearly symmetric.

Lemma 2.8 (Symmetry argument). Suppose that f : G → [−1, 1] is a function, that

M ∈ Mn(F5),and that b ∈ F
n
5 . Suppose that

Eh|∆(f ; h)∧(Mh + b)|2 ≫δ 1.

Then M is approximately symmetric in the sense that

rk(M −MT ) ≪δ 1.
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Proof. Write D = M −MT . Expanding the assumption gives

Ex,y,hf(x)f(x− h)f(y)f(y − h)ω(x−y)T Mh+(x−y)T b ≫δ 1,

Making the substitution z = x+ y − h, this becomes

Ex,y,zf(x)f(z − x)f(y)f(z − y)ω(x−y)T M(x+y−z)+(x−y)T b ≫δ 1,

which can be written

EzEx∆
′(f ; z)(x)ωxT M(x−z)+xT b

Ey∆
′(f ; z)(y)ω−yT M(y−z)−yT bωxT Dy ≫δ 1.

Here, we have written
∆′(f ; z)(t) := f(t)f(z − t).

Writing

gz(x) := ∆′(f ; z)(x)ωxT M(x−z)+xT b,

we have
EzEx,ygz(x)gz(y)ω

xT Dy ≫δ 1.

Averaging over z, we see that there is some function g : G → C with ‖g‖∞ 6 1 such
that

|Exg(x)g(y)ω
xT Dy| ≫δ 1,

that is to say
|Exg(x)ĝ(Dx)| ≫δ 1.

This implies that
Ex|ĝ(Dx)| ≫δ 1,

and so in particular there are ≫δ |G| values of x such that |ĝ(Dx)| ≫δ 1. However we
know from Parseval’s identity that the number of r such that |ĝ(r)| ≫δ 1 is ≪δ 1. Thus
there is some set S ⊆ F

n
5 with |S| ≫δ |G| and |D(S)| ≪δ 1. This implies that

| ker(D)| ≫δ |G|,
which immediately implies the result.

We have shown that if ‖f‖U3 is large then the derivative of f correlates with a sym-
metric linear form. To complete the proof of Proposition 2.2, we must “integrate” this
statement and show that f correlates with a quadratic. We give this integration now.

Proof of Proposition 2.2. From Corollary 2.7 and Lemma 2.8, we know that

Eh|∆(f ; h)∧(Mh + b)|2 ≫δ 1, (2.7)

where
rk(M −MT ) ≪δ 1.

Write Msym := 1
2
(M +MT ), and let V := ker(M −MT ). For each t ∈ G there is some

bt such that we have
Mh + b = Msymh + bt.

for all h ∈ V + t. By a trivial averaging argument and the fact that codim(V ) ≪δ 1,
we may find a t such that

Eh1h∈V +t|∆(f ; h)∧(Mh + b)|2 ≫δ 1.

This of course implies that

Eh1h∈V +t|∆(f ; h)∧(Msymh+ bt)|2 ≫δ 1,
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and hence by positivity that

Eh|∆(f ; h)∧(Msymh+ bt)|2 ≫δ 1.

By redefining M to be Msym and b to be bt, it follows that we may assume in (2.7) that
M is symmetric.

Expanding out (2.7) we obtain

Eh,x,yf(x)f(x− h)f(y)f(y − h)ωhT M(x−y)+bT (x−y) ≫δ 1.

Substituting y := x− k, we obtain

Eh,x,kf(x)f(x− h)f(x− k)f(x− h− k)ωhT Mk+bT k ≫δ 1.

Using the identity

xTMx− (x− h)TM(x− h)− (x− k)TM(x− k) + (x− h− k)TM(x− h− k) = 2hTMk,

this may be written as

Eh,x,kg1(x)g2(x− h)g3(x− k)g4(x− h− k) ≫δ 1, (2.8)

where g1(x) := f(x)ω
1
2
xT Mx, g2(x) := f(x)ω− 1

2
xT Mx−bT x, g3(x) := f(x)ω− 1

2
xT Mx and

g4(x) := f(x)ω
1
2
xT Mx−bT x. Note that the functions g2, g3, g4 are bounded by 1; this is,

in fact, the only property of them that we shall use.

Now the left-hand side of (2.8) may be rewritten using the Fourier transform as
∑

r

ĝ1(r)ĝ2(−r)ĝ3(−r)ĝ4(r).

It follows immediately frrm Hölder’s inequality that

‖ĝ1‖4 ≫δ 1,

which, since ‖ĝ1‖2 6 1, implies that

‖ĝ1‖∞ ≫δ 1,

that is to say there is some r ∈ Fn
5 such that

|Exf(x)ω
1
2
xT Mx+rT x| ≫δ 1.

This, at last, completes the proof of Proposition 2.2.

Remark. In going from (2.8) to the end of the proof, what we have really done is apply
the Gowers-Cauchy-Schwarz inequality (cf. the exercises following Lecture 1) and the
inverse theorem for the U2-norm.

Further reading. The orginal argument of Gowers is in [8]. This took place in the group G = Z/NZ, not in a
finite field model, and did not quite give a necessary and sufficient inverse theorem for the U3-norm. It was
instead shown that if f : Z/NZ → [−1, 1] has large U3-norm then f correlates with a quadratic polynomial
on some subprogression of length a power of N . This is a “local” statement, and as such is much weaker than
having large U3-norm, which is “global”, i.e. involves averaging over the whole group G.

To get an inverse theorem, one extra ingredient must be added to Gowers’ work. This is the symmetry
argument, Lemma 2.8. It was first given in [18]. That paper gives an inverse theorem for the U3-norm in any
finite abelian group of odd order. To even state the result is somewhat complicated, and we defer a discussion
until we have thoroughly examined the finite field case. An inverse theorem for the U3-norm in F

n
2 was given

by Samorodnitsky [29], using the method we have described but with a slight twist to enable him to handle
characteristic 2. It is very likely that a combination of his methods and ours would allow one to prove an
inverse theorem in any finite abelian G, but to my knowledge no-one has bothered to do this yet.
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As we remarked, one may replace our ≫δ 1 notation with more precise bounds, ending up with a version
of Proposition 2.2 with a function of the form exp(−Cδ−C) on the right-hand side. It would be of great
interest to know whether this could be improved, perhaps even to cδC . This would follow from the so-called
Polynomial-Freiman-Ruzsa conjecture, the finite field version of which is discussed in [12].

The strongest known inverse result for the U3 norm on F
n
5 is the following, proved in [18].

Proposition 2.9 (Inverse theorem for the U3-norm on F
n
5 , II). Suppose that f : F

n
5 → [−1, 1] is a function

for which ‖f‖U3 > δ. Then there exists a subspace H 6 F
n
5 with codim(H) 6 Cδ−C, together with a system of

quadratic forms rT
y x + xT Myx indexed by the cosets y + H of H, such that

Ey|Ex∈y+Hf(x)ωxT Myx+rT
y x| > cδC .

Note that the amount of correlation is cδC rather than exp(−Cδ−C), but one must pass to a coset of a subspace
of somewhat large codimension.

The proof of this result is rather longer than that of Proposition 2.2, and involves a good deal more machinery

(Bogolyubov’s method and Freiman homomorphisms). This stronger result is necessary for certain applications,

for example in our paper [19] in which it is shown that r4(F
n
5 ) ≪ N(log N)−c.

3. Lecture 3

Topics to be covered:

• Quadratic factors
• The energy increment lemma
• The idea of approximating a function by projecting onto a low-complexity factor
• The Koopman-von Neumann decomposition
• The arithmetic regularity decomposition

Our main effort so far has been devoted to proving a result of the form “if ‖f‖U3 is
large then f has a large quadratic Fourier coefficient”.

In this section we turn to a discussion of how this kind of information can be useful to
us. There are many instances in additive combinatorics where study of a single Fourier
coefficient is fruitful. However there are many other occasions on which it is beneficial
to consider several Fourier coefficients of f , say the set of large Fourier coefficients of
f . We must develop analogues of this theory in the quadratic setting.

From now on, matrices M ∈ Mn(F5) will only appear in quadratic forms xTMx. Thus
from this point onwards it is natural to adopt the convention that all matrices are

symmetric. We note that a (slightly) more high-brow approach to the whole theory,
avoiding the use of bases, appears in our paper [19].

The following simple lemma will be used over and over again.

Lemma 3.1 (Gauss sums). Suppose that M is symmetric and that rkM = d. Then for

any r ∈ G we have

|Ex∈Gω
xT Mx+rT x| 6 5−d/2.

If r = 0 then equality occurs.
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Proof. Squaring, we obtain

|Ex∈Gω
xT Mx+rT x|2 = Ehω

hT Mh+rT h
Exω

2hT Mx

6 Eh|Exω
2hT Mx|.

The inner sum is zero unless h ∈ ker(M). This occurs with probability 5−r, and so we
do indeed get

|Ex∈Gω
xT Mx+rT x|2 6 5−d.

If r = 0 then the phase ωhT Mh+rT h is actually equal to 1 when h ∈ ker(M), and so
equality occurs.

Using this lemma, we may highlight one of the immediate difficulties with formulating
“quadratic Fourier analysis”.

Lemma 3.2 (Profusion of large QFCs). Let f : Fn
5 → [−1, 1] be a function. Then there

at most δ−2 values of r for which

|f̂(r)| = |Ex∈Fn
5
f(x)ωrT x| > δ.

However, the number of pairs (M, r) such that

|Ex∈Fn
5
f(x)ωxT Mx+rT x| > δ

need not be bounded in terms of δ.

Proof. The first statement, which is included for comparison with the classical setting,
is immediate from Parseval’s identity. To illustrate the second, one may consider a
function as simple as f(x) ≡ 1. For any symmetric matrix M with rk(M) 6 log5(1/δ),
we have

|Ex∈Fn
5
f(x)ωxT Mx| > δ.

The number of such matrices is not bounded in terms of δ.

This lemma suggests that we should perhaps only consider QFCs as “essentially differ-
ent” if they are not too close in rank. This turns out to be a useful idea, and we will
return to it later when we are in a position to formulate it properly.

As we said there are many arguments (e.g. [6, 10, 23, 30]) where one considers the set
of δ-large Fourier coefficients

Specδ(f) := {r ∈ F
n
5 : |f̂(r)| > δ}.

Without going into details of the applications, let us describe a useful way to think
about the way this construction is often used.

Definition 3.3 (Factors). Let φ1, . . . , φk : Fn
5 → F5 be any functions. These functions

describe a σ-algebra B on Fn
5 , the atoms of which are sets (of which there are at most

5k) of the form {x : φ1(x) = c1, . . . , φk(x) = ck}. If f : Fn
5 → C is a function then

we often consider the conditional expectation E(f |B). Note that E(f |B)(x) is just the
average of f over the atom B(x) which contains x. We will usually refer to σ-algebras
arising in this way as factors, by analogy with ergodic theory.

Definition 3.4 (Linear factors). Suppose that r1, . . . , rk ∈ Fn
5 . Then the σ-algebra

B whose atoms are the sets {x : rT
i x = ci, i = 1, . . . , k} is called a linear factor of

complexity at most k.
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Proposition 3.5 (Linear Koopman-von Neumann decomposition). Let f : Fn
5 → [−1, 1]

be a function and let δ > 0 be a parameter. Then there is a linear factor B of complexity

at most 4δ−4 such that

f = f1 + f2,

where

f1 := E(f |B)

and

‖f2‖U2 6 δ.

Remark. The Koopman-Von Neumann theorem may be described in words as “any
bounded function is the sum of a “low complexity” function formed by projecting onto
a linear factor, and a “uniform” function which is small in U2.

Proof. The proof we give uses Fourier analysis, and does not generalise to give a result
for the U3-norm. We include it to justify the fact that this is a proposition which
encodes the notion of “taking all the large Fourier coefficients of f”.

Write η := δ2/2. Let S := Specη(f): note that by Parseval’s identity we have |S| 6 4δ−4.

Let H = S⊥ be the annihilator of f and write µH for the Haar measure on H , that is
to say µH := 1H/E1H . Define f1 := f ∗ µH and f2 := f − f ∗ µH . It is not hard to see
that f1 = E(f |B), where B is the factor defined by the linear functions rTx, r ∈ S. To

conclude the proof, we only need check that ‖f̂2‖∞ is small. To that end, we have

|f̂2(r)| = |f̂(r)||1 − µ̂H(r)|.

If r ∈ Specη(f) then µ̂H(r) = 1, and so f̂2(r) = 0. If r /∈ Specη(f) then by definition we

have |f̂(r)| 6 η, and so |f̂2(r)| 6 2η in this case. It follows that ‖f̂2‖∞ 6 2η, and thus
by the inverse theorem for the U2-norm we have ‖f2‖U2 6

√
2η. The result follows.

Definition 3.6 (Quadratic factors). Let r1, . . . , rd1 ∈ Fn
5 be vectors, and letM1, . . . ,Md2

∈ Mn(F5) be symmetric matrices. We write B1 for the linear factor generated by the
rT
j x. Write B2 for the σ-algebra generated by the functions rT

j x and the pure quadratic

functions xTMjx. Clearly B2 refines B1. We call the pair (B1,B2) a (homogeneous)
quadratic factor of complexity (d1, d2).

Proposition 3.7 (Quadratic Koopman von Neumann decomposition). Let (B(0)
1 ,B(0)

2 )

be a quadratic factor with complexity at most (d
(0)
1 , d

(0)
2 ). Let f : Fn

5 → [−1, 1] be a

function and let δ > 0 be a parameter. Then there is a quadratic factor (B1,B2) of

complexity at most (d
(0)
1 +Oδ(1), d

(0)
2 +Oδ(1)) which refines (B(0)

1 ,B(0)
2 ), and such that

f = f1 + f2,

where

f1 := E(f |B2)

and

‖f2‖U3 6 δ.



20 BEN GREEN

Remark. For applications in which bounds are unimportant, it is better to apply the
arithmetic regularity lemma which we will give later. A version of the Koopman-von
Neumann theorem with reasonable bounds is the key tool in [19]. In that application

we take (B(0)
1 ,B(0)

2 ) to be the trivial factor.

The key to proving the Koopman von Neumann decomposition lies in the following
result.

Lemma 3.8 (Energy increment). Let (B1,B2) be a quadratic factor of complexity at

most (d1, d2), and let f : F
n
5 → [−1, 1] be a function such that

‖f − E(f |B2)‖U3 > δ.

Then exists a refinement (B′
1,B′

2) of (B1,B2) of complexity at most (d1 + 1, d2 + 1) such

that we have the energy increment

‖E(f |B′
2)‖2

2 > ‖E(f |B2)‖2
2 + c(δ), (3.1)

where c : (0, 1) → R+ is some non-decreasing function of δ.

Proof. The function g := f − E(f |B2) is certainly bounded by 2, so we may apply the
inverse theorem for the U3-norm (Proposition 2.2) to conclude that there is a quadratic
xTMx + rTx so that

|Exg(x)ω
xT Mx+rT x| > c(δ). (3.2)

We may clearly assume that c : (0, 1) → R+ is a non-decreasing function. The linear part
rTx and the pure quadratic part xTMx of this quadratic together induce a quadratic

factor (B̃1, B̃2) of complexity (1, 1).

Now since xTMx + rTx is B̃2-measurable, it is clear that

Exg(x)ω
xT Mx+rT x = ExE(g|B̃2)(x)ω

xT Mx+rT x,

In particular, (3.2) implies that

‖E(g|B̃2)‖1 > c(δ). (3.3)

Now define B′
1 := B1 ∨ B̃1 and B′

2 := B2 ∨ B̃2. Again, the meaning of this is the obvious

one; simply intersect all the atoms of Bi with those of B̃i. It is clear that (B′
1,B′

2) is a
quadratic factor of complexity at most (d1 + 1, d2 + 1).

It remains to establish the energy increment (3.1). A key tool is

Pythagoras’ theorem. Suppose that B,B′ are two σ-algebras on Fn
5 such that B′

refines B. Let f : Fn
5 → [−1, 1] be any function. Then

‖E(f |B′)‖2
2 = ‖E(f |B)‖2

2 + ‖E(f |B′) − E(f |B)‖2
2.
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Now we have the chain of inequalities

‖E(f |B′
2)‖2

2 − ‖E(f |B2)‖2
2 = ‖E(f |B′

2) − E(f |B2)‖2
2

= ‖E(g|B′
2)‖2

2

> ‖E(g|B̃2)‖2
2

> ‖E(g|B̃2)‖2
1

> c(δ).

The justification of these five lines uses respectively Pythagoras’ theorem, the fact that

B′
2 refines B2, Pythagoras’ theorem together with the fact that B′

2 refines B̃2, the Cauchy-
Schwarz inequality, and (3.3).

Proof of Proposition 3.7. Start with (B1,B2) = (B(0)
1 ,B(0)

2 ). If

‖f − E(f |B2)‖U3 6 δ (3.4)

then STOP. Otherwise, we may apply Lemma 3.1 to extend (B1,B2) to a quadratic factor
with complexity incremented by at most (1, 1) and the energy ‖E(f |B2)‖2

2 incremented
by at least c(δ). If (3.4) holds then STOP, otherwise repeat the process. Since f is
bounded, the energy ‖E(f |B2)‖2

2 lies in the interval [0, 1]. Since c : (0, 1) → R+ is
non-decreasing, we cannot iterate the above procedure more than 1/c(δ) times before
we STOP. The claim follows.

We will not give an application of the Koopman von-Neumann decomposition, since
the interesting applications require quantitative versions of the result (cf. [19]). The
result has a significant shortcoming, which is that the uniformity parameter need not be
small in terms of the complexity of (B1,B2). For such situations there is another type
of decomposition, which we call the arithmetic regularity lemma because of an analogy
with Szemerédi’s regularity lemma in graph theory. We note that any use of this type
of decomposition necessarily results in terrible “tower-type” bounds: see for example
[7, 11]. As we have stated, however, bounds are not our concern in these lectures.

Proposition 3.9 (Arithmetic regularity lemma for U3). Let δ > 0 be a parameter, and

let ω : R+ → R+ be an arbitrary growth function2 (which may depend on δ). Suppose that

n > n0(ω, δ) is sufficiently large, and let f : Fn
5 → [−1, 1] be a function. Let (B(0)

1 ,B(0)
2 )

be a quadratic factor of complexity (d
(0)
1 , d

(0)
2 ). Then there is M = M(δ, ω, d

(0)
1 , d

(0)
2 ) and

a quadratic factor (B1,B2) which refines (B(0)
1 ,B(0)

2 ) and has complexity at most (d, d),
d 6 M , together with a decomposition

f = f1 + f2 + f3,

where

f1 := E(f |B2),

‖f2‖2 6 δ

and

‖f3‖U3 6 1/ω(d).

2The use of arbitrary growth functions really does put us in the domain of “discrete analogues of
infinitary mathematics”. The arithmetic regularity lemma is indeed very close in spirit to the main
result of the ergodic-theoretic paper [2].
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Proof. Apply the Koopman-von Neumann theorem iteratively, with parameters δi,

i = 1, 2, . . . to obtain quadratic factors (B(i)
1 ,B(i)

2 ) with complexities at most (Mi,Mi)
such that

• (B(i)
1 ,B(i)

2 ) is a refinement of (B(i−1)
1 ,B(i−1)

2 );

• ‖f − E(f |B(i)
2 )‖U3 6 δi;

• Mi is bounded above in terms of Mi−1 and δi.

Choose the sequence of δis such that δi+1 6 1/ω(Mi) for all i. Since Mi is bounded
above by a quantity depending only on δ1, . . . , δi, this is certainly possible.

Now the energies ‖E(f |B(i)
2 )‖2

2 are non-decreasing, and are all bounded by 1. By the
pigeonhole principle there is therefore some i 6 ⌈δ−2⌉ such that

‖E(f |B(i+1)
2 )‖2

2 − ‖E(f |B(i)
2 )‖2

2 6 δ2.

For such an i, we may take for our decomposition

f1 := E(f |B(i)
2 ),

f2 := E(f |B(i+1)
2 ) − E(f |B(i)

2 )

and

f3 := f − E(f |B(i+1)
2 ).

It follows from Pythagoras’ Theorem that ‖f2‖2 6 δ, as required.

What is the point of the Koopman von Neumann and arithmetic regularity results, say
for the U3-norm? The answer is that they often reduce the study of general functions
(say from the point of view of counting 4-term arithmetic progressions) to the study of
projections E(f |B) onto “low-complexity” quadratic factors. This, however, is of little
consequence unless we can study those supposedly simple objects.

Definition 3.10 (Rank of quadratic factors). Suppose that (B1,B2) is a quadratic
factor of complexity (d1, d2), being defined by d1 linear forms rT

1 x, . . . , r
T
d1
x and d2 pure

quadratics xTM1x, . . . , x
TMd2x. We say that (B1,B2) has rank at least r if

rk(λ1M1 + · · ·+ λd2Md2) > r

whenever λ1, . . . , λd2 are elements of F5, not all zero.

When we are not concerned with bounds, it turns out that we may assume our quadratic
factors have exceedingly large rank. We will see in the next lecture that factors with
high rank are much easier to handle than factors with small rank.

Lemma 3.11 (Making factors high-rank). Let ω : R+ → R+ be an arbitrary growth

function. Then there is another function τ = τω with the following property. Let (B1,B2)
be a quadratic factor with complexity at most (d1, d2). Then there is a refinement (B′

1,B′
2)

of (B1,B2) with complexity at most (d′1, d2), where d′1 6 τ(d1, d2), which has rank at least

ω(d′1 + d′2).
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Proof. Suppose as usual that (B1,B2) is described by d1 linear functions rT
1 x, . . . , r

T
d1
x

and d2 “pure quadratics” xTM1x, . . . , x
TMd2x. Suppose that (B1,B2) does not have

rank at least ω(d1 + d2). Then there is some relation

rk(λ1M1 + · · ·+ λd2Md2) 6 ω(d),

where we may assume without loss of generality that λd2 = 1. Let s1, . . . , sk, k 6 ω(d)

be a basis for ker(U)⊥, where U := λ1M1 + · · · + λd2Md2 , and let (B†
1,B†

2) be the
homogeneous quadratic factor defined by the linear forms rT

1 x, . . . , r
T
d1
x, sT

1 x, . . . s
T
k x and

the quadratic forms xTM1x, . . . , x
TMd2−1x. It has complexity bounded by (d†1, d2 − 1),

where d†1 6 d + ω(d1 + d2). The value of xTMd2x is determined by the values of the
xTMix, i = 1, . . . , d2 − 1 together with the value of xTUx. This in turn is determined
by the coset of ker(U) that x lies in, and hence by sT

1 x, . . . , s
T
k x. It follows that (B†

1,B†
2)

refines (B1,B2).

Now we ask whether (B†
1,B†

2) has rank at most ω(d†1 + d2). If so, we refine again,

obtaining a new factor (B††
1 ,B††

2 ) with complexity bounded by (d†1 + ω(d†1 + d2), d2 − 2).
This procedure can last no more than d2 steps, however, since at each stage the number
of pure quadratic phases is reduced by one. We may take (B′

1,B′
2) to be the factor that

we have when the procedure terminates.

Proposition 3.12 (Arithmetic regularity lemma for U3, II). Let δ > 0 be a parameter,

and let ω1, ω2 : R+ → R+ be arbitrary growth functions (which may depend on δ).
Let n > n0(δ, ω1, ω2) be sufficiently large, and let f : Fn

5 → [−1, 1] be a function. Let

(B(0)
1 ,B(0)

2 ) be a quadratic factor of complexity (d
(0)
1 , d

(0)
2 ). Then there is a quadratic

factor (B1,B2) with the following properties:

(1) (B1,B2) refines (B(0)
1 ,B(0)

2 );
(2) The complexity of (B1,B2) is at most (d1, d2), where

d1, d2 6 M(δ, ω1, ω2, d
(0)
1 , d

(0)
2 ),

for some fixed function M ;

(3) The rank of (B1,B2) is at least ω1(d1 + d2);
(4) There is a decomposition f = f1 + f2 + f3, where

f1 := E(f |B2),

‖f2‖2 6 δ

and

‖f3‖U3 6 1/ω2(d1 + d2).

Remark. The formulation is very similar to that in Proposition 3.9, but we now insist
that the factor (B1,B2) be homogeneous, and also include a condition on its rank. The
statement of Proposition 3.12 will look complicated at first sight, but there is nothing
much to be scared of. As always with complicated propositions, it is as well to attempt
to formulate what has been proved in a somewhat looser, wordier way. Here is an
attempt:

Let f be any function on Fn
5 . Then, up to an error which is small in L2, we may

write f as a sum of a function which is measurable with respect to a bounded complexity
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quadratic factor, plus an error which is miniscule in ‖ · ‖U3. Furthermore we may insist

that the rank of the quadratic factor is huge in comparison to its complexity.

Proof. Apply Proposition 3.9 to get a factor (B1,B2) refining (B(0)
1 ,B(0)

2 ), and a de-
composition f = f1 + f2 + f3 such that f1 = E(f |B2), ‖f2‖2 6 δ/2 and ‖f3‖U3 6

1/ω2(τ(d1, d2) + d2), where (d1, d2) is an upper bound for the complexity of (B1,B2)
and τ = τω1 is the function appearing in Lemma 3.11. Using that lemma, we may
refine (B1,B2) to a quadratic factor (B′

1,B′
2) with complexity at most (d′1, d

′
2), where

d′1 6 τ(d1, d2) and d′2 6 d2, and with rank at least ω1(d
′
1 + d′2). Define a new decompo-

sition f = f ′
1 + f ′

2 + f ′
3, where

f ′
1 := E(f |B′

2),

f ′
2 := f2 + E(f |B2) − E(f |B′

2)

and f ′
3 = f3. Either this has the desired properties, or else we have

‖E(f |B2) − E(f |B′
2)‖2 > δ/2.

By Pythagoras’ theorem this leads to the energy increment

‖E(f |B′
2)‖2

2 > ‖E(f |B2)‖2
2 + δ2/4. (3.5)

In this eventuality we apply Proposition 3.9 again, initialising with (B(0)
1 ,B(0)

2 ) :=
(B′

1,B′
2). In view of the energy increment (3.5), we can only repeat this ⌈4/δ2⌉ times

before we reach a decomposition with the properties we desire.

Further reading. There is a wealth of directions to go in. Results of Koopman von Neumann type go back,
implicitly, a long way. The name was first given, by Tao and I, to a result in our paper [17] on primes in AP.
That result was somewhat different to the results here, but the method of proof (the energy increment strategy)
is the same.

The arithmetic regularity lemma for the U3-norm will be the subject of a forthcoming paper by Tao and I
[22]. There is, of course, an analogous result for U2-norm, and this was implicit in Bourgain [3]. The proof
there used the Fourier transform rather than the energy-increment strategy. A substantially more difficult (!)
proof of the same result was given 15 years later by me [11]; a number of applications were given there. The
energy-increment proof of Proposition 3.9 seems at the moment to be the “right” way to think about these
issues, and is essentially the approach taken in [32].

There are connections with regularity results for graphs and hypergraphs, the first result of this type being

Szemerédi’s regularity lemma [31]. There are also parallels with results in ergodic theory such as [2]. Perhaps

it is best to refer the reader to the lectures by Kra and Tao at this school. The ICM article by Tao [33] has

many references and would represent a fine place to begin further investigations.

4. Lecture 4

Topics to be covered

• Working on a quadratic factor; the configuration space.
• A theorem on progressions of length 4: an example of how to put all the ingre-

dients together.

Our aim in this lecture is to prove the following theorem by using the machinery we
have developed. Recall that we are writing N := 5n.



MONTRÉAL NOTES ON QUADRATIC FOURIER ANALYSIS 25

Theorem 4.1 (G.-Tao). Let α, ǫ > 0 be real numbers. Then there is an n0 = n0(α, ǫ)
with the following property. Suppose that n > n0(α, ǫ), and that A ⊆ Fn

5 is a set with

density α. Then there is some d 6= 0 such that A contains at least (α4 − ǫ)N four-term

arithmetic progressions with common difference d.

Remarks. It is easy to see that one cannot replace α4 by anything larger, by considering
a random set of density α. This theorem has, as a consequence, a version of Szemerédi’s
theorem for progressions of length four in finite fields, namely r4(F

n
5 ) = o(N). The

theorem is a finite field version of a conjecture of Bergelson, Host and Kra. Rather
bizarrely at first sight, this result does not generalise to progressions longer than four.

Now in the last lecture we worked rather hard in order to show that, in various senses,
the study of an arbitrary function f : Fn

5 → [−1, 1] can be reduced to the study of a
B2-measurable function E(f |B2), where (B1,B2) is a quadratic factor with “bounded
complexity” and high rank. To make use of this, we need to be able to understand
B2-measurable functions. At the very least, we are going to want to know about the
size of the atoms in B2 and, for any four atoms, the number of four-term progressions
spanned by those atoms. It turns out that the “high-rank” assumption allows us to
simply compute these quantities using simple Fourier analysis.

Suppose, throughout this lecture, that (B1,B2) is a quadratic factor defined by d1 linear
forms rT

j x and d2 pure quadratics xTMjx. (Recall that B1 is the σ-algebra generated
by the linear functions, and B2 is the σ-algebra generated by the linear and quadratic
functions.) We will always suppose (as we clearly may) that the vectors rj are linearly
independent.

To understand B2-measurable functions, that is to say functions which are constant on
atoms of B2 (or alternatively functions which have the form E(f |B2)), it is helpful to
work in configuration space F

d1
5 × F

d2
5 . We write Γ : Fn

5 → F
d1
5 and Φ : Fn

5 → F
d2
5 for the

maps Γ(x) := (rT
1 x, . . . , r

T
d1
x) and Φ(x) := (xTM1x, . . . , x

TMd2x).

Lemma 4.2 (Size of atoms). Suppose that (B1,B2) has rank at least r. Let (a, b) ∈
F

d1
5 × F

d2
5 . Then the probability that a randomly chosen x ∈ Fn

5 has Γ(x) = a and

Φ(x) = b is 5−d1−d2 +O(5−r/2).

Remark. In this lemma and the next, the probabilistic language is present only to avoid
normalising factors of N = 5n. This is really a statement about the number of x with
Γ(x) = a, Φ(x) = b.

Proof. The quantity in question is given by

5−d1−d2Ex

d1∏

i=1

( ∑

µi∈F5

ωµi(r
T
i x−aj)

) d2∏

j=1

( ∑

λj∈F5

ωλj(x
T Mjx−bj)

)
,

which rearranges as

5−d1−d2

∑

µi,λj

ω−λ1b1−···−λd2
bd2

−µ1a1−···−µd1
ad1Exω

xT (λ1M1+···+λd2
Md2

)x+(µ1r1+···+µd1
rd1

)T x.

(4.1)
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Now the rank of (B1,B2) is at least r, which means that

rk(λ1M1 + · · ·+ λd2Md2) > r.

In view of the Gauss sum estimate, Lemma 3.1, this means that every term in (4.1) in
which the λi are not all zero is bounded by 5−d1−d2−r/2. Of the terms with λ1 = · · · =
λd2 = 0, the linear independence of the ri guarantees that the only term which does not
vanish is that with µ1 = · · · = µd1 = 0. The result follows immediately.

Lemma 4.3 (4-term progressions). Suppose that (B1,B2) has rank at least r. Suppose

that (a(1), b(1)), . . . , (a(4), b(4)) ∈ F
d1
5 × F

d2
5 . Suppose that a 4-term progression (x, x +

d, x+ 2d, x+ 3d) ∈ (Fn
5 )4 is chosen at random. If

a(1), a(2), a(3), a(4) are in arithmetic progression (4.2)

and

b(1) − 3b(2) + 3b(3) + b(4) = 0 (4.3)

then the probability that Γ(x+ id) = a(i), Φ(x+ id) = b(i) for i = 1, 2, 3, 4 is 5−2d1−3d2 +
O(5−r/2). Otherwise, it is zero.

Proof. The important thing to appreciate here is that four elements in different atoms
of B2 can only lie in arithmetic progression if the two constraints (4.2) and (4.3) are
satisfied. Furthermore these are the only relevant constraints, in that if they are satisfied
(and if the factor (B1,B2) has large rank) then we can accurately count the number of
four-term progressions involving those atoms.

The necessity of the constraints (4.2) and (4.3) is easy. If (x, x+ d, x+ 2d, x+ 3d) is an
arithmetic progression, we need only observe that Γ(x),Γ(x+d),Γ(x+2d),Γ(x+3d) are
also in arithmetic progression, and that Φ(x)−3Φ(x+d)+3Φ(x+2d)−Φ(x+3d) = 0.

To obtain the statement about probability, we proceed in the same manner as in Lemma
4.2. The notation here is, however, somewhat fearsome. We start with the observation
that the probability in question is

5−4d1−4d2Ex,d

4∏

l=1

d1∏

i=1

( ∑

µ
(l)
i ∈F5

ωµ
(l)
i (rT

i (x+ld)−a
(l)
i )

) d2∏

j=1

( ∑

λ
(l)
j ∈F5

ωλ
(l)
j ((x+ld)T Mj(x+ld)−b

(l)
j )

)
,

and then swap the order of summation to rearrange as

5−4d1−4d2

∑

µ
(l)
i ,λ

(l)
j ∈F5

Ex,dω
xT Px+2xT Qd+dT Rd+uT x+vT d−w, (4.4)

where

P = P (λ) =

d2∑

j=1

(λ
(1)
j + λ

(2)
j + λ

(3)
j + λ

(4)
j )Mj ,

Q = Q(λ) =

d2∑

j=1

(λ
(1)
j + 2λ

(2)
j + 3λ

(3)
j + 4λ

(4)
j )Mj ,

R = R(λ) =

d2∑

j=1

(λ
(1)
j + 4λ

(2)
j + 9λ

(3)
j + 16λ

(4)
j )Mj ,
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u = u(µ) =

d1∑

i=1

(µ
(1)
i + µ

(2)
i + µ

(3)
i + µ

(4)
i )ri,

v = v(µ) =

d1∑

i=1

(µ
(1)
i + 2µ

(2)
i + 3µ

(3)
i + 4µ

(4)
i )ri

and

w = w(µ, λ) =
4∑

l=1

d1∑

i=1

µ
(l)
i a

(l)
i +

4∑

l=1

d2∑

j=1

λ
(l)
j b

(l)
j .

We use Lemma 3.1 repeatedly. By fixing either x or d, we see that the inner sum in
(4.4) (that is, the expectation over x, d) is O(5−r/2) unless

λ
(1)
j + λ

(2)
j + λ

(3)
j + λ

(4)
j = λ

(1)
j + 4λ

(2)
j + 9λ

(3)
j + 16λ

(4)
j = 0, (4.5)

in which case certainly P = R = 0. In this case, the inner sum is a rather purer-looking

Ex,dω
xT Qd+uT x+vT d−w. (4.6)

For fixed d, this is zero unless Qd+ u = 0. If λ
(1)
j + 2λ

(2)
j + 3λ

(3)
j + 4λ

(4)
j 6= 0 then, since

rk(Q) > r, this cannot happen for more than 5−r of all d, and (4.6) is bounded by 5−r.
If on the other hand

λ
(1)
j + 2λ

(2)
j + 3λ

(3)
j + 4λ

(4)
j = 0 (4.7)

then (4.6) further reduces to

Ex,dω
uT x+vT d−w,

which clearly vanishes unless

µ
(1)
i + µ

(2)
i + µ

(3)
i + µ

(4)
i = µ

(1)
i + 2µ

(2)
i + 3µ

(3)
i + 4µ

(4)
i = 0. (4.8)

We have shown that the inner sum in (4.4) is O(5−r/2) unless the five linear conditions
(4.5),(4.7),(4.8) are satisfied. The total contribution to (4.4) from cases where one of
these five conditions is not satisfied is therefore O(5−r/2). The total contribution from
cases when the five conditions are satisfied is

5−4d1−4d2

4∑

l=1

∑

µ
(l)
i ,λ

(l)
j

ω−w(µ,λ).

Since the a(i) are in arithmetic progression and the b(i) satisfy b(1) −3b(2) +3b(3) − b(4), it
is easy to check that w(µ, λ) = 0 when the five conditions are satisfied. It remains only
to note that, of the 54d1+4d2 choices for µ, λ, the five conditions are satisfied for 52d1+d2

of them.

If f : Fn
5 → C is a B-measurable function then we write f : F

d1
5 × F

d2
5 → C for the

function which satisfies

f(x) = f(Γ(x),Φ(x))

for all x ∈ Fn
5 . We will adopt this convention of using bold letters to denote functions

on configuration space for the rest of these lectures without further comment.

We are now in a position to prove Theorem 4.1.
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Proof of Theorem 4.1. Recall that A ⊆ Fn
5 is a set with density α. Apply Proposition

3.12 to find a quadratic factor (B1,B2) with complexity (d1, d2), di 6 d0(α, ǫ) and rank
r satisfying (say)

r > 100(log(1/ǫ) + log(1/α) + d1 + d2)

together with a decomposition 1A = f1 +f2 +f3 such that f1 = E(1A|B2), ‖f2‖2 6 δ and
‖f3‖U3 6 1/ω(d1 + d2). The parameter δ and the growth function ω will be specified as
the proof unfolds, but will depend only on α and ǫ.

Let rT
1 x, . . . , r

T
d1
x be the linear functions involved in B1, and let H := 〈r1, . . . , rd1〉T . Let

1H be the characteristic function of H , and let µH be the normalised measure on H ,
thus µH := 1H/E1H . We are going to prove that

Ex,d1A(x)1A(x+ d)1A(x+ 2d)1A(x+ 3d)µH(d) > α4 − ǫ, (4.9)

which clearly implies the theorem (for some d ∈ H). To do this, we split the left-hand-
side of (4.9) into 81 parts by substituting 1A = f1 + f2 + f3.

Claim 1. The contribution from any of the 65 terms which contain f2 is no more ǫ/200.

Proof. Suppose that the term is

Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d), (4.10)

where g1 = f2 (the proofs of the other cases are very similar). Set F (x) := Edg2(x +
d)g3(x+ 2d)g4(x+ 3d)µH(d), and observe that ‖F‖∞ 6 1. It follows that

|Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d)| 6 |Exg1(x)F (x)| 6 ‖f2‖1 6 ‖f2‖2.

This proves the claim provided that δ 6 ǫ/200.

Claim 2. The contribution from any of the 65 terms which contain f3 is no more than
ǫ/200.

Proof. Suppose that the term is

Ex,dg1(x)g2(x+ d)g3(x+ 2d)g4(x+ 3d)µH(d), (4.11)

where g1 = f3 (the proofs of the other cases are very similar). We have

1H(d) =
∑

t

1t+H(x+ 2d)1t+H(x+ d),

where the sum is over all cosets t + H of H in Fn
5 . By the generalised von Neumann

theorem (Proposition 1.11), we have

|Ex,dg1(x)g2(x+d)1t+H(x+d)g3(x+2d)1t+H(x+2d)g4(x+3d)| 6 ‖f3‖U3 6 1/ω(d1+d2)

for each t. It follows that (4.11) is no more than 52d1/ω(d1 +d2), which proves the claim
provided that ω(t) > 5t+4/ǫ.

Remarks. Note carefully that for Claim 2 to follow we required the regularity parameter
ω(t) to be exponential in t, rather than (say) polynomial. This is why the full arithmetic
regularity lemma is required, rather than just the Koopman-von Neumann theorem.

These two claims account for 80 of the 81 terms into which we have decomposed the
left-hand side of (4.9). To finish the argument, it suffices to show that

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d) > α4 − ǫ/2. (4.12)
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Now f1 is (by definition) constant on atoms of B2. Recall that these atoms are indexed
by the configuration space F

d1
5 × F

d2
5 , and that we write f1(a, b) for the value of f1 on

the atom indexed by (a, b).

Claim 3. We have

E
(a,b)∈F

d1
5 ×F

d2
5
f1(a, b) = α(1 +O(52d1+2d2−r/2)). (4.13)

Proof. Note that the result would be trivial (and would hold without the O-term) if
all the atoms of B2 had exactly the same size. Now recall that Lemma 4.2 gives an
approximate version of this statement. We leave the slightly tedious details to the
reader.

Claim 4. We have

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)µH(d)

= E
a∈F

d1
5 ,b(1),...,b(4)∈F

d2
5

b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b
(1))f1(a, b

(2))f1(a, b
(3))f1(a, b

(4)) +O(52d2+3d2−r/2).

Proof. Condition on the quadruple (a(1), b(1)), . . . , (a(4), b(4)) of atoms containing (x, x+
d, x+2d, x+3d). The constraint that d ∈ H is equivalent to a(1) = a(2) = a(3) = a(4) = a,
say. By Lemma 4.3, we must also have b(1) − 3b(2) +3b(3) − b(4) = 0. Invoking that same
lemma, we have

Ex,df1(x)f1(x+ d)f1(x+ 2d)f1(x+ 3d)1H(d)

= (5−2d1−3d2 +O(5−r/2))
∑

a∈F
d1
5

∑

b(1),...,b(4)∈F
d2
5

b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b
(1))f1(a, b

(2))f1(a, b
(3))f1(a, b

(4))

Normalising, we obtain the stated result.

Now the rank r was chosen very large (r > 100(log(1/ǫ) + log(1/α) + d1 + d2)). All we
need do to establish (4.12), then, is prove the inequality

E
a∈F

d1
5 ,b(1),...,b(4)∈F

d2
5

b(1)−3b(2)+3b(3)−b(4)=0

f1(a, b
(1))f1(a, b

(2))f1(a, b
(3))f1(a, b

(4)) >
(
E

(a,b)∈F
d1
5 ×F

d2
5
f1(a, b)

)4
.

(4.14)

Noting that the left-hand side is

E
a∈F

d1
5

E
x∈F

d2
5

(
E

b,b′∈F
d2
5

b−3b′=x

f1(a, b)f1(a, b
′)
)2
,

this follows from two applications of the Cauchy-Schwarz inequality.

Alternatively, it is amusing to give an interpretation in terms of the Fourier transform.
The left-hand side of (4.14) is

E
a∈F

d1
5

∑

r∈F̂
d2
5

|f̃1(a, r)|2|f̃1(a,−3r)|2. (4.15)
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In this expression the tilde denotes Fourier transform in the second variable, which was
called b in (4.14).

A lower bound for (4.15) comes from ignoring all terms except those with r = 0, yielding

Ea∈Fn
5
|f̃1(a, 0)|4 = Ea∈Fn

5
|E

b∈F
d2
5

f1(a, b)|4.

The result now follows from Hölder’s inequality.

A more interesting application of these partial Fourier transforms may be found in [19].

5. Lecture 5

Topics to be covered

• An introduction to the theory on Z/NZ.

For simplicity I will assume that N is a large prime.

I am only scheduled to give four lectures at the school. These notes are here for two
reasons: firstly, it is possible that I will finish the material from the first four lectures
early. More importantly, it is the theory on the group Z/NZ that is of most interest for
applications in number theory, and it would be remiss of me to not at least point the
reader in directions where she may learn more.

Note that the theory on Z/NZ is actually rather richer than for an arbitrary abelian
group G, because we have been able to pursue analogies with ergodic theory. This
is concerned with Z-actions, and Z/NZ is the finite abelian group which most closely
models Z.

One way of motivating the theory is to try and take what we know for Fn
5 and attempt

to adapt it to Z/NZ. Let us note that the basic definitions of Gowers norms and the
basic generalised von Neumann theorems of Lecture 1 go over essentially unchanged to
Z/NZ. The first stumbling block comes at the point where we ask for a conjectural
analogue of Proposition 2.2. A first guess might be:

Conjecture 5.1. Suppose that f : Z/NZ → [−1, 1] is a function with ‖f‖U3 > δ. Then

there are r, s ∈ Z/NZ such that

|Ex∈Z/NZf(x)e
(rx2 + sx

N

)
| ≫δ 1.

Remark. As usual in analytic number theory we have written e(θ) := e2πiθ.

It turns out that this conjecture is false. One example of a function on Z/NZ which
has large U3-norm, but does not correlate with a quadratic form e(rx2 + sx/N), is a
quadratic e(θx2) where θ 6≈ r/N . Such a quadratic is most naturally defined on Z, but
by restricting its domain to {1, . . . , N} one obtains a function which can be defined
on Z/NZ. Another example is a “bracket quadratic” such as e(θ1x{θ2x}), where {t}
denotes the fractional part of t. The second of these counterexamples is somehow more
serious, but it is also rather harder to see that this rather exotic function does provide
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a counterexample to Conjecture 5.1. For a brief discussion see [15, §6], and for more
detail see [18].

If the only obvious generalisation of Proposition 2.2 is wrong, how should we proceed?
It turns out that a hint is given to us by the quantitatively stronger form of the inverse
theorem for the U3-norm on Fn

5 , namely Proposition 2.9. We are not concerned with
quantitative issues here, so let us state a weak consequence of that result. This is
actually a trivial consequence of Proposition 2.2, too.

Proposition 5.2 (Inverse result for U3-norm on Fn
5 , III). Suppose that f : Fn

5 → [−1, 1]
is a function with ‖f‖U3 > δ. Then there is a subspace H 6 Fn

5 with codimH ≪δ 1, a

matrix M ∈ Mn(F5) and a vector r ∈ Fn
5 such that

|Exf(x)1H(x)ωxT Mx+rT x| ≫δ 1.

Remark. It is not too hard to show that this is equivalent to Proposition 2.2: we leave
this as an exercise to the reader.

Let us try and generalise this result. There are two objects which do not obviously
transfer to Z/NZ: the notion of subspace, and (implicitly) the notion of quadratic form.
It turns out that the second notion can be sensibly formulated for functions defined on
any set.

Definition 5.3 (Quadratic forms). Let S be a set in some abelian group, and let
ψ : S → R/Z be a function. We say that ψ is a quadratic form if the second derivative

ψ′′(h1, h2) := ψ(x+ h1 + h2) − ψ(x+ h1) − ψ(x+ h2) + ψ(x)

is well-defined, that is to say if this definition does not depend on x whenever x, x +
h1, x+ h2, x+ h1 + h2 ∈ S.

Whilst the notion of subspace is rather vacuous in Z/NZ, there is a plentiful supply of
approximate subspaces. These are more usually called Bohr sets.

Definition 5.4 (Approximate subspaces/Bohr sets). Let R = {r1, . . . , rk} ⊆ Z/NZ

and let ǫ > 0. Then we write

B(R, ǫ) := {x ∈ Z/NZ : |e(rx/N) − 1| 6 ǫ}.
This is called the Bohr set with width ǫ corresponding to frequency set R.

The set R should actually be thought of as a set of characters on Z/NZ, each value r
corresponding to the character x 7→ e(rx/N). Once thought of in this way, it is easy to
see how Bohr sets can be defined on any finite abelian group G. Bohr sets on Fn

5 do not
depend very seriously on the width parameter ǫ, and certainly for ǫ < 1/10 (say) they
are just vector subspaces.

There is a lot to say about Bohr sets, and much information may be found in [34]. See
also [12], where there is a discussion of the place of Bohr sets in the transition from finite
field models to Z/NZ in various settings. We caution the reader that there are certain
technicalities associated with the study of Bohr sets in additive combinatorics, most
particularly the need to consider regular Bohr sets. In this brief overview we will say
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nothing more about these technicalities, other than that most of them were overcome
in a seminal paper of Bourgain [4].

To return to the point, we may now state Theorem 2.7 (i) of [18], which is an inverse
theorem for the U3-norm on Z/NZ. In the light of the above discussion, the reader will
see that it is a natural generalisation of Proposition 5.2.

Proposition 5.5 (Inverse theorem for the U3-norm on Z/NZ, I). Suppose that f :
Z/NZ → [−1, 1] is a function and that ‖f‖U3 > δ. Then there is a set R ⊆ Z/NZ,

|R| ≪δ 1, a parameter ǫ ≫δ 1 such that the Bohr set B := B(R, ǫ) is regular, some

y ∈ Z/NZ and a quadratic form ψ : y +B → R/Z such that

|Exf(x)1y+B(x)e(ψ(x))| ≫δ 1. (5.1)

It turns out that result is necessary and sufficient, that is to say if (5.1) is satisfied then
‖f‖U3 is large. See [18], Thm 2.7 (ii) (note that this is the only point at which the
regularity of B(R, ǫ) is relevant). This is, at first sight, a very unsatisfactory state of
affairs: we have a theorem which gives a necessary and sufficient condition for a natural
problem which interests us, yet the theorem is somewhat inelegant and difficult to state.

Our subject being in some sense an extension of the work of Hardy and Littlewood, one
should perhaps recall at this point Hardy’s view that there is “no permanent place in
the world for ugly mathematics”.

With this in mind we observe that although Proposition 5.5 is necessary and sufficient,
it need not be the only necessary and sufficient condition. In what follows we will
be rather vague. Write Q = Q(δ) for the collection of all “quadratic obstructions” of
the form 1y+B(x)e(ψ(x)), where B,ψ are as above. Any other collection Q′ with the
property that anything in Q is approximately a linear combination of elements in Q′,
and vice versa, will also be a necessary and sufficient collection of quadratic obstructions
for Z/NZ.

It turns out that there is a very natural choice for Q′, the collection of 2-step nilsequences.
The idea that we should look at these objects came to us from ergodic theory – there
will be much more on this in the lectures of Bryna Kra at the school.

Let G be a connected, simply-connnected 2-step nilpotent Lie group over R and let
Γ 6 G be a discrete, cocompact submanifold. The quotient G/Γ is called a 2-step
nilmanifold. For the sake of illiustration, we recommend that the reader take

G :=




1 R R

0 1 R

0 0 1


 , Γ :=




1 R R

0 1 R

0 0 1


 ,

in which case G/Γ is a 3-dimensional compact manifold called the Heisenberg nilmani-

fold.

Let g ∈ G and x ∈ G/Γ be arbitrary. The element g induces a continuous map
Tg : G/Γ → G/Γ by multiplication on the left. Any sequence of the form (F (T n

g ·x))n∈N,
where F : G/Γ → [−1, 1] is continuous, is called a 2-step nilsequence. It turns out that
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the collection of 2-step nilsequences can play the rôle of Q′ as discussed above. The
following is proved in [18], Thm. 12.8.

Proposition 5.6 (Inverse Theorem for the U3-norm on Z/NZ, II). Let f : Z/NZ →
[−1, 1] be a function, and suppose that ‖f‖U3 > δ. Then there is a 2-step nilsequence

(F (T n
g · x))n∈N with complexity ≪δ 1 such that

|En6Nf(n)F (T n
g · x)| ≫δ 1.

If, conversely, f correlates with a 2-step nilsequence of bounded complexity then the

‖ · ‖U3-norm of f is large.

We have not defined the complexity of a nilsequence. It is some number associated to
(F (T n

g · x))n∈N, which bounds both the dimension of the underlying nilmanifold G/Γ,
and also the Lipschitz constant of F with respect to some sensible metric. There is no
canonical way of defining the complexity, but this is not important for the theory.

We do not attempt to explain why this collection Q′ of 2-step nilsequences is “equiva-
lent” to the collection Q used in Proposition 5.5. Detailed technical discussions may be
found in [18, 20]. A short calculation involving the Heisenberg example, showing how a
2-step nilsequence on it resembles a quadratic form on a Bohr set, is given in [15].
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Internat. CNRS Univ. Orsay, Orsay 1976, pp399–401.
[32] T. C. Tao, A quantitative ergodic theory proof of Szemerédi’s theorem, preprint.
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