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Puzzle

Valid sequence

(1, 1, 1)
(1, 2, 3)
(1, 4, 4)
(2, 5, 1) for every two rows, at least two coordinates increase
(3, 1, 5)
(1, 6, 6)
(2, 7, 8)

Question

What’s the length of longest valid sequence from {1, . . . , L}?

Observation

The length is at most L2.
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Monotone sequences

Theorem (Erdős-Szekeres 1935)

Every permutation of {1, . . . , n} has a monotone subsequence of
length at least

√
n.

Example

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.

1 5 2 7 3 6 4
inc. 1 2 2 3 3 4 4
dec. 1 1 2 1 2 2 3
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Theorem (Erdős-Szekeres 1935)

Every permutation of {1, . . . , n} has a monotone subsequence of
length at least

√
n.

Example

1 5 2 7 3 6 4

Proof. Under each number, write lengths of longest increasing and
decreasing subsequences ending there.

1 5 2 7 3 6 4
inc. 1 2 2 3 3 4 4
dec. 1 1 2 1 2 2 3



Monotone sequences
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Ordered Ramsey Theory

Proposition

Every 2-coloring of edges of K{1,...,n} has a monochromatic forward
path of length at least

√
n.

Proof. Under each vertex, write lengths of longest red/blue paths
ending there.

1 2 3 4 5

1 1 2 2 2

1 2 3 4 5

Tight:
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3− 1 6= 1

Proposition

Every 3-coloring of edges of K{1,...,n} has a non-rainbow forward
path of length at least 3

√
n.

Proof. Under each number, write lengths of longest
red-free/blue-free/green-free paths ending there.

1 2 3 4 5

1 2 3 4 5

1 1 2 2 2

1 2 3 4 5

Already Deduced

Every 3-coloring of edges of K{1,...,n} has a non-rainbow forward
path of length at least

√
n.
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Construction

Already Deduced

Every 3-coloring of edges of K{1,...,n} has a non-rainbow forward
path of length at least

√
n.

Proposition

There is a 3-coloring of edges of K{1,...,n} where all non-rainbow

forward paths have length at most n2/3.

Corollary

There is a valid sequence of triples of length at least L3/2.

Observation

Every valid sequence of triples has length at most L2.
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k-majority tournaments

Definition

Given n vertices, and 2k − 1 preference orderings on them
(permutations of 1, . . . , n), the k-majority tournament has

−→
ij

when majority of orderings prefer i over j .

Much research on these objects, from

social choice theory

extremal combinatorics

Application to Ramsey

Potential source of constructions: control size of largest transitive
subtournament.
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Ramsey

Theorem (Erdős-Szekeres)

Every 2-coloring of edges of Kn contains a monochromatic clique
of order at least 1

2 log2 n.

Theorem (Erdős), probabilistic method

There is a 2-coloring of the edges of Kn where all monochromatic
cliques have order at most 2 log2 n.

Challenge

Discover interesting new Ramsey constructions, esp. explicit.
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Ramsey constructions

Vertex set. n = r2k−1, write as (2k − 1)-tuples from 1, . . . , r .

Preference orderings. 2k − 1 in total

1 Lexicographic.

2 Lexicographic, coordinates prioritized 2, 3, . . . , r , 1.

3 Lexicographic, coordinates prioritized 3, 4, . . . , r , 1, 2.

4 etc.

Other orderings of less-significant coordinates should be used.

Special transitive subtournaments

If no tiebreaks necessary, for every two tuples, the later one is
greater in at least half the coordinates.
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Result

Corollary

There is a valid sequence of triples of length at least L3/2.

Observation

Every valid sequence of triples has length at most L2.

Theorem (L.)

There is a valid sequence of triples of length at most L2/ log∗ L.

Definition

Tower function T (n) = 22
2·
··
2

. Inverse function is log∗ n.
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Auxiliary graph

1

3

4

1

3

6

3

1

(1, 3, 1)
(3, 3, 3)
(6, 1, 4)

(x, y, z)

x

y
z



Matching

Observation

Same-labeled edges form a matching.

Proof.

(x, y, z)
...
(x, y', z)

x

y'

z

z

y



Non-crossing matching

Observation

Same-labeled edges form a non-crossing matching.

Proof.

(x, y', z)
...
(x', y, z)

x

y'

z

z y

x'



Induced matching

Observation

Same-labeled edges form an induced matching.

Proof.

(x, y, z)
...
(x, y', z')

z < z' < z x

y'

z

z y

x'

z'



Ruzsa-Szémeredi

Question

Given a graph with 2n vertices, where edges can be decomposed
into n induced matchings. What is maximum possible number of
edges?

Theorem (Ruzsa-Szémeredi)

Maximum is n2/ log∗ n edges.

Theorem (Fox)

Maximum is n2/e log
∗ n edges.

Theorem (Ruzsa-Szémeredi)

It is possible to achieve n2/e
√
log n edges.
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Σ-free matching

Observation

Same-labeled edges form a Σ-free matching.

Proof.

z < z' < z'' < z

z

z'

z

z''



Ruzsa-Szémeredi generalizations

Question

Given a graph with 2n vertices, where edges can be decomposed
into n matchings that are Σ-free. What is maximum possible
number of edges?

Proposition

If also forbid “floppy” Σ, max number of edges is at most n3/2.

Question

Given a graph with 2n vertices, where edges can be decomposed
into n matchings that are ξ-free. What is maximum possible
number of edges?

Any improved bound transfers to triples problem.
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