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CHAPTER 1
Basic Counting and Induction

One friend from Sesame Street, plus one friend from Sesame Street, equals two
friends from Sesame Street! Ah, ha, ha!

—Count von Count
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1.1 Counting Principles

Example 1.1 (4-Digit Numbers).
How many 4-digit numbers are there?

When we say 4 digits, we exclude those that start with a zero. There are 4 slots for us
to fill:

︸ ︷︷ ︸
1···9

× ︸ ︷︷ ︸
0···9

× ︸ ︷︷ ︸
0···9

× ︸ ︷︷ ︸
0···9

The leftmost digit can be any of 1 · · · 9 (since 0’s aren’t allowed). The remaining digits
can be any of 0 · · · 9. Notice that no matter our choice of number for previous slots
(we’ll work left to right, say), the number for the next slot doesn’t change.
Therefore, we can multiply the options we have for each slot and conclude there are
9× 10× 10× 10 = 9000 4-digit numbers. ,

Example 1.2 (4-digit numbers with a twist).
How many 4-digit numbers are there where no side by side digits are equal?

Again, there are 4 slots to fill:

A︸ ︷︷ ︸
1···9

× B︸ ︷︷ ︸
0···9, but
not A

× C︸ ︷︷ ︸
0···9, but
not B

× D︸ ︷︷ ︸
0···9, but
not C

We have 9 options for A, and then 9 options for B,C, and D each, since each has 10
possible digits, and one is excluded. Here, it is important that we work left to right!
In total, we get that there are 9× 9× 9× 9 = 6561 such numbers. ,

Note 1.3 (Working Right-to-Left).
In the above example, we implicitly worked from left-to-right. What if we
had tried to work right to left on the previous problem?

There would still be 4 slots to fill:

D︸ ︷︷ ︸
??

× C︸ ︷︷ ︸
0···9, but
not B

× B︸ ︷︷ ︸
0···9, but
not A

× A︸ ︷︷ ︸
0···9

We have a problem at D. It would be nice if we could say that there were 8 options;
the digits 1 · · · 9 and exclude the digit in box C. But what if C is a zero? Then there
are 9 options! We can do two things from here:

1 We can put bounds on the answer. There are always at least 8 options for the
last digit, and at most 9, so we can say

10× 9× 9× 9× 8 ≤ ANS ≤ 10× 9× 9× 9× 9

Notice that this agrees with our answer from before. Indeed ANS = 6561 satis-
fies 6480 ≤ ANS ≤ 7290.
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2 We can reduce the problem to an “easier” one. Notice that we get

ANS =

# of 0 any any︸ ︷︷ ︸
no equal numbers
next to each other

×9+

# of 1 · · · 9 any any︸ ︷︷ ︸
no equal numbers
next to each other

×8

But then we have to case again to solve these smaller problems! For this problem,
this is overkill, but keep this strategy in mind.

Enough with this problem for now, let’s move on to an even harder one! ,

Example 1.4 (4-digit numbers with another twist).
How many 4-digit numbers are there with no equal digits next to each other
which are also even?

Take a minute to try this yourself.
You’ll quickly see that all options (left-to-right, right-to-left, some other order) lead to
some messy casing. Unfortunately, there is no elementary counting method to solve
this problem! Let’s work through the cases. To stay organized, we’ll work bottom up:

◦ How many 1-digit numbers (not starting with zero) are there where no side-by-
side digits are the same? Clearly, there are 9. But, let’s split them up into how
many are even, and how many are odd:

Even1-digit = 4 and Odd1-digit = 5

◦ Now, how many 2-digit numbers, broken up by even and odd:

– Let’s find E2 first. The 10’s digit must be either even or odd. If it is even,
then the number looks like

︸ ︷︷ ︸
E1

even =⇒ E2 (even) = 4× E1

since the last number can be any of 0, 2, 4, 6, 8, but not the previous one.
We know that one of these is ruled out, since we are considering the case
when the leading box is even. Similarly, if we make the leading box odd:

︸ ︷︷ ︸
O1

even =⇒ E2 (odd) = 4×O1

since an odd number will never “collide” with an even number. Therefore,
it total, we get E2 = E2 (even) + E2 (odd) = 4× E1 + 5×O1.

– Now, to find O2. Again, case on the parity of the ten’s digit to get:

O2 (even) = 5× E1 and O2 (odd) = 4×O1

so in total, we get O2 = O2 (even) +O2 (odd) = 5× E1 + 4×O1.
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◦ However, note that the above argument generalizes. We can easily replace the
squares with brackets under them by longer numbers with issues. Thus, we get
the more general constraints:

E1 = 4, O1 = 5, Ei+1 = 4Ei + 5Oi, and Oi+1 = 5Ei + 4Oi

These can be solved out by hand. Here’s a table of the first few values:

i Ei Oi

1 4 5

2 41 40

3 364 365

4 3281 3280

The number we are looking for is E4 = 3281 such numbers. ,

1.2 More Counting and Induction

Counting Grids and Pascal’s Triangle

Theorem 1.5 (Arrangements of N distinct objects).
N objects can be arranged in N ! ways.

Proof. Working left-to-right, we have N options for the first object, N − 1 for the sec-
ond, and so on. We multiply to get N !.

Example 1.6 (Paths Through a Grid).
Consider the network of roads pictured to the right.
Say we are only allowed to make downwards move-
ments (either down-left or down-right).
Under these restrictions, how many ways are there to
get from the top of the grid to the bottom?

Start

End

Notice that we have to make three down-left movements (hereafter called an L), and
three down-right movements (called an R). Thus, the number of paths is the number
of ways to arrange 3 L’s and 3 R’s. How many ways are there to do this?

Theorem 1.7 (Arrangements with Duplicates).
Consider a group of N objects which include n1 identical objects of type 1, n2

identical objects of type 2, · · · and nk identical objects of type k.
The number of permutations of these objects is

N !

n1!× n2!× · · · × nk!
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Proof. Index the elements in each group so that they are distinct. For example, for the
type 1 objects, we might label them n

(1)
1 , n

(2)
1 , · · · , n(j1)

1 . Then, arrange these newly
distinct objects. There are N ! ways to do this.
However, the original objects were not distinct, so we end up over-counting. By how
much do we over-count? We’ll deal with each type of object separately. Fix the posi-
tions of every other object:

A1 A2 A3

The above position is in a way “equivalent” to

A2 A1 A3

In fact, any arrangement of this form is equivalent if the only thing we do is permute
the position of the A’s. In this example, there are 3! ways to do this. In general, for
objects of type-i, there are ni! ways to do this. Thus, we have to divide out by the
amount we over-count by for each type of object, giving the above formula.

Note 1.8 (Returning to the Grid Problem).
With this in hand, we see that there are 6!

3!×3! ways to arrange 3 L’s and 3
R’s, and thus that many paths through the grid.

Example 1.9 (Grid with a Traffic Jam).
Using the same rules, how many paths are there through the below grid?

Start

End

Notice we can find the number of routes as follows:

Start

End

=

All Paths

−

Paths that use
the jammed road

Using the idea in the picture above, we have

◦ Total Number of Paths. As in the original grid example, there are 8!
4!×4! total paths

through the grid. Here, we make the additional observation that we can equiv-
alently find this by drawing 8 lines, and choosing the position of the 4, say L’s.
Thus, this is also equal to

(
8
4

)
. This is a convenient way of thinking about this.
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◦ Number of Paths through the Jammed Road. We have that

Paths(total) = Paths(Start→Jammed Road) × Paths(Jammed Road→End)

=

(
3

1

)
×
(
4

2

)
The first equality is justified because every path uses the jammed road, and the
top path is independent to the bottom path. The second uses the same logic as
we’ve been using above.

Thus, in total, there are
(
8
4

)
−
(
3
1

)(
4
2

)
paths through the original grid. ,

There is another way to solve this problem: by “brute-forcing” the question. At each
intersection in the grid, we will write the number of ways to get from the start to each
point. The start point will have an implied number of 0, and every other intersection
will be calculated by

•
x

•
y

•
x+ y

If a path is missing (for example, on an edge), just ignore it. Proceeding in this way
for the grid in the previous example, we get the following:

1 4 3 4 1

1 3 3 1

5 7 7 5

1 2 1

12 14 12

1 1

26 26

Start (0)

End (52)

Fortunately, this agrees with our previous answer:
(
8
4

)
−
(
3
1

)(
4
2

)
= 52. ,

Definition 1.10 (Pascal’s Triangle).
Pascal’s Triangle is based off of the constructions seen in this section, where the
two edges are all 1’s, and the rest of the numbers are calculated as the sum of
the two numbers above it. It continues indefinitely. For example, here are the
first 5 rows of Pascal’s Triangle:

1 4 6 4 1

1 3 3 1

1 2 1

1 1

1
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Important 1.11 (Pascal’s Triangle and Binomial Coefficients).
From our discussion above, we also know that Pascal’s Triangle can also
be written using binomial coefficients, as:

(4
0

) (4
1

) (4
2

) (4
3

) (4
4

)(3
3

) (3
2

) (3
1

) (3
0

)(2
0

) (2
1

) (2
2

)(1
0

) (1
1

)(0
0

)

Proposition 1.12 (Sum of the nth Row of Pascal’s Triangle).
For any non-negative integer n,

(
n
0

)
+
(
n
1

)
+ · · ·+

(
n
n

)
= 2n, or

∑n
k=0

(
n
k

)
= 2n.

Proof. We prove this by counting in two ways. Consider half of an n × n grid without
holes. We show the number of ways to get to the bottom is both of these expressions.

An Example with n = 4

◦ One method is to randomly choose n options of left and right (note, where on
the blue line we end up doesn’t matter, so after any n moves, we’re done). At
each step, we have 2 options, and we make n decisions. Thus, there are 2n ways
to get to the bottom.

◦ However, we could also count the number of ways to get to each point at the
bottom, and add them up. From above, we know that the number of ways to
get to the points are the numbers

(
n
0

)
, · · · ,

(
n
n

)
, so in total we have

∑n
k=0

(
n
k

)
= 2n

ways to get to the bottom.

Since these numbers count the same set, they must be equal.

A (Brief) Review of Induction

Example 1.13 (Back to 4-digit Numbers).
Recall the problem in Exercise 1.4, where we found the relations

E1 = 4, O1 = 5, Ei+1 = 4Ei + 5Oi, and Oi+1 = 5Ei + 4Oi

and some values of the sequence to be

i Ei Oi

1 4 5
2 41 40
3 364 365
4 3281 3280
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However, it’s kind of a pain to calculate these values with the recurrences. Can
we find an explicit formula? Based on the values we calculated, we may guess
that

En =
9n + (−1)n

2
and On =

9n − (−1)n

2

Proof. First, note it is sufficient to prove only the expression for En, since then the
other follows since En +On = 9n. By induction on n.

◦ Base Case. When n = 1, En = 91+(−1)1

2 = 4. Hooray!

◦ Induction Step. Assume the claim holds for n.

En+1 = 4En + 5On = 4En + 5(9n − En) = 5 · 9n − En

= 5 · 9n − 9n + (−1)n

2
=

9n+1 + (−1)n+1

2

which is what we wanted.

By induction, the claim holds for all n.

1.3 Applications of Linear Algebra

Recall the problem of finding the number of n-digit numbers with no adjacent num-
bers equal that were even/odd. We had the relations:

En+1 = 4× En + 5×On

On+1 = 5× En + 4×On

which solved to the explicit formulas En = 9n+(−1)n

2 and On = 9n−(−1)n

2 . However,
the last proof of this with induction was somewhat unsatisfying. Induction proofs
typically are. Let’s try and use matrices![

En+1

On+1

]
=

[
4 5
5 4

] [
En

On

]
and

[
E1

O1

]
=

[
4
5

]
Notice that we can write a general term of the sequence by doing this multiplication
many times. This gives an expression for En and On:[

En

On

]
=

[
4 5
5 4

]n−1 [
4
5

]

Definition 1.14 (Eigenvector/Eigenvalue).
From linear algebra, you should recall that powers of matrices are intimately
related to eigenvalues and eigenvectors. Recall that if

A~v = λ~v and ~v 6= ~0

then we say ~v is an eigenvector of A with corresponding eigenvalue λ.
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Proposition 1.15 (Eigenvector of Matrix with Fixed Row Sum).
The rows of a matrix sum to a value c if and only if [1, · · · , 1] is an eigenvector
with corresponding eigenvalue c.

Proof. We won’t give a formal proof, but rather an example which is illustrative. In
our current problem [

4 5
5 4

] [
1
1

]
=

[
9
9

]
= 9×

[
1
1

]
so the relevant 2 × 2 matrix has fixed row sums of 9, so [ 11 ] is an eigenvector with
corresponding eigenvalue 9.

Proposition 1.16 (Eigenvectors of a Real, Symmetric Matrix).
Given a matrix A ∈ Rn, the eigenvectors of A are:

1. all real; and

2. orthogonal

Definition 1.17 (Trace of a Matrix).
The sum of the diagonal entries of a (square) matrix A is called the trace of A,
and is denoted by trA.

Proposition 1.18 (Eigenvalues, Traces, and Determinants).
For a square matrix A, we have

1. detA = product of the eigenvalues of A

2. trA = sum of the eigenvalues of A

The above facts can all be used without proof in this class (we won’t prove them).

With this in mind, let’s shift the 4-digit problem to looking at what fraction of 4-digit
numbers are even/odd. Define:

en =
fraction of all n-digit numbers which are even
with no same digit next to each other =

En

9n

on =
fraction of all n-digit numbers which are odd
with no same digit next to each other =

On

9n

Then, our relations (in matrix form) become:[
en+1

on+1

]
=

[
4/9 5/9
5/9 4/9

] [
en
on

]
and

[
e1
o1

]
=

[
4/9
5/9

]
There are many ways to see this. One is to divide our original recurrences by 9n. Then,
as before, we combine these to get[

en
on

]
=

[
4/9 5/9
5/9 4/9

]n−1 [
4/9
5/9

]
10



Note 1.19 (Markov-Chains).

The matrix
[
4/9 5/9
5/9 4/9

]
is particularly nice because its rows and columns

sum to one (we call such a matrix a doubly stochastic matrix). This allows
us to think of the entries as probabilities.
For example, the top left entry can be thought of as the probability of
becoming even after transition given that the current entry is even, and
the bottom left entry can be thought of as probability of becoming even
given currently odd, etc.
A system which behaves in this way (i.e. one where the chances of
switching between states can be encapsulated in a matrix like this) is
called a Markov Chain.

Now, all that’s left to finish the problem is to do the algebra. Since the sums of the
rows are all equal, 1 is an eigenvalue with corresponding eigenvector [ 11 ]. For the
other eigenvector, we know it must be orthogonal, so try

[
1
−1

]
:[

4/9 5/9
5/9 4/9

] [
1
−1

]
=

[
−1/9
1/9

]
= −1

9

[
1
−1

]
X

so
[

1
−1

]
is an eigenvector with eigenvalue −1/9. Using this as an eigenbasis, write:[

4/9
5/9

]
=

1

2

[
1
1

]
− 1

18

[
1
−1

]
so that we get:[

4/9 5/9
5/9 4/9

]n−1 [
4/9
5/9

]
=

[
4/9 5/9
5/9 4/9

]n−1(
1

2

[
1
1

]
− 1

18

[
1
−1

])
=

1

2

[
1
1

]
− 1

18

(
−1

9

)n−1 [
1
−1

]
=

[
1
2 + 1

2

(
− 1

9

)n
1
2 −

1
2

(
− 1

9

)n
]

which when manipulated become 1
9n

(
9n+(−1)n

2

)
and 1

9n

(
9n−(−1)n

2

)
, confirming our

formulas for En and On. ,

11



CHAPTER 2
Inclusion-Exclusion and the

Pigeonhole Principle

The name “Pigeonhole Principle” actually comes from the fact that pigeonhole
also means:

Pigeonhole. (noun) a small open compartment (as in a desk or
cabinet) for keeping letters or documents

It has nothing to do with pigeons or holes. It really ought to be called the “Mailbox
Principle.”

—Po-Shen Loh
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2.1 Dirichlet’s Theorem

π is well-known to be an irrational number. In particular,

π ≈ 3.1415926...

However, there are some rational numbers which serve as a “good” approximation
to pi. One better known one is 22/7 = 3.142857, and a perhaps lesser known one is
355/113 = 3.1415929... For how big the denominators of these fractions are, they do
an excellent job of approximating π.

Note 2.1 (On small denominators).
Somehow these fractions are more “impressive” approximations than oth-
ers. For example, the approximation 314/100 is unremarkable.
We can make this more mathematical by observing that 314/100 only gives
2 digits of accuracy for 3 digits in the denominator, while a fraction like
22/7 gives the same accuracy (actually slightly better) with a third of the
digits in its denominator.

Proposition 2.2 (Rational Approximation to a Real Number).
For any real number α, there are infinitely many ways to write α ≈ p

q such that
the approximation error is less than 1

q , or more mathematically, such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q

Proof. For any q ∈ Z+, we can partition the number line as follows:

1
q

2
q

3
q

4
q

· · ·
p
q

p+1
q

α

and since α has to fall somewhere, just pick the highest p
q less than α. Since there are

infinite positive integers, there are infinite of such rational approximations.

Theorem 2.3 (Dirichlet’sa Approximation Theorem).
For every real number α ∈ R, there are infinitely many rational approximations
p
q ≈ α such that ∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

q2

aPronounced “deer-eh-shleigh”
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Example 2.4 (Dirichlet approximation to π).
The fractions 22

7 and 355
113 are Dirichlet approximations to π since∣∣∣∣π − 22

7

∣∣∣∣ ≤ 1

72
and

∣∣∣∣π − 355

113

∣∣∣∣ ≤ 1

1132

Note 2.5 (How much better is q2?).
Notice that the only difference between Dirichlet’s theorem is that we get
q2 error rather than q. This turns out to be really powerful! For example:

(0.01)2 = 0.0001

so if we had an error of at most 0.01 with our original rough approxima-
tion, we can get an error of at most 0.0001 using Dirichlet’s Theorem. This
roughly doubles the number of correct digits! That’s great!

Why is this harder to prove than our original proposition? Let’s consider a modified
number line for the new problem:

1
q2

2
q2

3
q2

4
q2

· · ·
p
q2

p+1
q2

α

Notice that in order to be able to approximate alpha with our original strategy, it must
lie in one of the shaded regions above, so this strategy will not be able to approximate
the α pictured above for this given q. It follows that we can’t do this for every q:

Example 2.6 (A (q, α) pair we can’t approximate).
Take α =

√
2 and q = 10. Since

√
2 ≈ 1.414, it is further away than 0.01 away

from 14/10 and 15/10, so we cannot use q = 10 to approximate
√
2.

Now, to actually start to prove Dirichlet’s Theorem, we’ll come up with a stronger
statement which we will show to be equivalent to the original:

Proposition 2.7 (Lemma for Dirichlet’s Theorem).
For any α ∈ R and N ∈ Z+, there are integers p and q with 1 ≤ q ≤ N and∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

qN

Why does this imply Dirichlet’s Theorem? We have to reconcile two things:

1 Where did our 1
q2 go?

Our lemma gives that we get a p
q with error at most 1

qN . But then

error ≤ 1

qN
≤ 1

q2
(since N ≥ q)

so we immediately get an approximation with error 1
q2 .
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2 Where did our infinitely many go?
Idea: I can use the proposition on the same α with infinitely many N ∈ Z+. For
example:

α =
√
2, N = 1 −→ p1/q1 ∈ Q

α =
√
2, N = 2 −→ p2/q2 ∈ Q
...

...

 within ± 1
q2i

of α

If we call the boxed set of numbers ? , then it suffices to show that some infinite
subset of that set is pairwise distinct. Let’s go ahead and prove this:

Proof. First note that Dirichlet’s Theorem is easy if α ∈ Q, since

α =
a

b
;

a

b
,
2a

2b
,
3a

3b
, · · · are all perfect approximations

with zero error. This gives our necessary infinite approximations. Therefore,
for the rest of the proof, assume that α is irrational.
Assume towards a contradiction that there are only finitely many distinct ap-
proximations in ? . This implies that there is a closest approximation, say p

q

α p
q

i.e. In the picture above, there are no elements of ? which are in the shaded
region. Since N can be any positive integer, there exists an N such that∣∣∣∣α− p

q

∣∣∣∣ ≤ 1

N

and by the proposition (which we have yet to prove, but we will), we get that∣∣∣∣α− p′

q′

∣∣∣∣ ≤ 1

q′N
≤ 1

N

and our new approximation p′

q′ will therefore be within the shaded region, which
contradicts the assumption that p

q is the closest approximation.

Now that we’ve shown that proposition 2.7 implies Dirichlet’s Theorem, all that’s left
now is to prove the proposition. The proof relies on the following “fact”:

Definition 2.8 (Pigeonhole Principle).
If n items are put inside m containers, and n > m, then there must be at least
one container with more than one item.
Because of this proof we are about to outline, the pigeonhole principle is also
sometimes called Dirichlet’s Box Theorem.

There’s not really a proof of the PHP... it just kind of falls out of how we define the
idea of “greater than.” Hopefully it’s believable.
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Now, for the proof of our proposition.

Proof. To begin, since q 6= 0, we can multiply through by q and prove the equivalent
statement:

|αq − p| ≤ 1

N

We construct the “clock” R/Z, and add the numbers 0α, 1α, · · · , Nα onto the clock,
and subdivide it into intervals of length 1/N :

1
N

2
N

0
N−1
N

N−2
N

...
...

There are N regions, and N +1 numbers, so there must be an interval with two num-
bers xα and yα in it. But notice that we can subtract 1 from x and y without changing
the size of the gap between them, so we will “walk” the numbers down until one of
them is zero. WLOG, assume x > y. Then

|xα− yα| ≤ 1

N
and |xα− yα| = |(x− y)α− 0α| =⇒ |(x− y)α| ≤ 1

N

and so (x− y)α is within 1/N of some integer, which is what we wanted.

2.2 More with the Pigeonhole Principle

Theorem 2.9 (Erdős-Szekeres Theorem).
In any sequence of N distinct real numbers, there is always a monotone subse-
quence of length ≥

√
N .

A monotone subsequence is just some subset of the numbers which keeps the original
order and is either strictly increasing or strictly decreasing. Some examples are:

Example 2.10 (Monotone Subsequences).
Consider the sequence of numbers:

3 1 4 5 9 2 6

4 5 6 is a monotone subsequence
3 2 is a monotone subsequence
3 1 is a monotone subsequence
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Proof. The proof of this is actually surprisingly short! Think about how we might find
a monotone subsequence:

3 1 4 5 9 2 6

Length of the longest increasing
subsequence ending here 1 1 2 3 4 2 4

Length of the longest decreasing
subsequence ending here 1 2 1 1 1 2 2

Do you notice a pattern? Each cell in the increasing row is given by the largest length
corresponding to a previous smaller number, plus 1 (and similarly for the decreasing
row). This actually gives us an efficient way to find a monotone subsequence.
However, we will focus on another fact: all the columns in any table will be distinct!
Why is this? Consider an arbitrary two rows:

X · · · Y

Since every number is distinct, either X > Y or Y > X. In the first case, the number in
the top row is guaranteed to go up by at least 1, and in the second case, the number in
the bottom row is guaranteed to go up by at least 1. This comes from our algorithm
for filling in the table. Thus, the two columns are distinct.
Let L denote the length of the longest monotone subsequence. Therefore

# columns ≤ L2 =⇒ N ≤ L2 =⇒
√
N ≤ L

which is what we wanted.

Note 2.11 (Use of the Pigeonhole Principle).
Notice that we didn’t ever explicitly mention the pigeonhole principle.
However, we still used the philosophy of

“Too much stuff, not enough space.”

in the proof. Often, this is how the PHP ends up being used.

Theorem 2.12 (Erdős-Szekeres Theorem, Againa).
For any positive integers s, t, any sequence of distinct real numbers with

length ≥ (s− 1)(t− 1) + 1

has a monotone increasing sequence of length s or a monotone decreasing se-
quence of length t.

aIn other texts, the Erdős-Szekeres Theorem is typically phrased like this.
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Note 2.13 (This statement implies the original one).
From this statement of the Erdős-Sekeres Theorem, we can recover the
original one. To ensure there is some monotone subsequence of length L,
this theorem only needs (L− 1)2 + 1 numbers.
This is even slightly better then the L2 bound we had with the previous
theorem!

Proof. We are given (s − 1)(t − 1) + 1 numbers which are distinct. Assume towards
a contradiction that all increasing subsequences have length 1, 2, · · · (s − 1) and all
decreasing subsequences have length 1, 2, · · · , (t− 1).
In the table, any given column has

←− {1, 2, · · · (s− 1)}
←− {1, 2, · · · (t− 1)} =⇒ (s− 1)(t− 1) options

By the pigeonhole principle, we know that two of the columns will be the same, since
there are (s− 1)(t− 1) + 1 columns, but only (s− 1)(t− 1) options. However, by the
same logic as in the previous proof, we know that no two columns can be the same, a
contradiction.

2.3 Algorithms and Efficiency

The algorithm we used in the above proofs is actually an efficient one. But how good
is it? That is, about how many steps does it take to find the length of the longest
monotone subsequence in N distinct numbers? First, some terminology:

Definition 2.14 (Efficient Algorithm).
We say an algorithm is efficient if the number of steps it takes can be upper
bounded by some polynomial.
The variable in the polynomial is generally some notion of the “size” of the
input. For example, in the problem we’re currently discussing, we would want
some bound in terms of N .

Note 2.15 (Big-O Notation).
This notation can be made precise with big-O notation. We say a function
f(x) is O(g(x)) if there exist constants C > 0 and x0 > 0 such that

f(x) ≤ Cg(x) for all x ≥ x0

and then that an algorithm is efficient if the number of steps it takes is
O(p(x)) for some polynomial p(x). We generally won’t do this in this class.
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Example 2.16 (Monotone-Subsequence is Efficient).
The algorithm discussed in the proof of the Erdős-Szekeres Theorem is an effi-
cient algorithm for computing the longest monotone subsequence.

To show that this is true, we have to make more precise the procedure we are taking.
We use the following algorithm to compute the longest monotone subsequence:

S: a sequence of distinct real numbers
N : length of S
LONGEST-MONOTONE(S):
1 Construct a 2×N table which looks like:

S1 S2 · · · SN−1 SN

2 Set the first column to 1
1 .

3 For every cell in the first row:
a Let M = the max of the previous cells in the top row

that have a smaller column label.
b Set the current cell to M + 1.

4 For every cell in the second row:
a Let M = the max of the previous cells in the top row

that have a bigger column label.
b Set the current cell to M + 1.

5 Scan through the table, and return the largest number.

Take a minute and convince yourself that this algorithm is exactly what we described
in the proof. The advantage to this is that we can go back through and describe the
cost of each step:

◦ [Step 1] We need to add a column with two cells for each number in the se-
quence, so this will take ≈ N steps.

◦ [Step 2] This will take ≈ 1 step

◦ [Step 3] For any given cell, step 3a will take up to N steps, since we could have
to check every previous cell in the row. Step 3b will take≈ 1 step. Since we have
to do this for every cell in the row, step 3 will take ≈ N2 steps.

◦ [Step 4] This is basically just step 3 again, so this will also take ≈ N2 steps.

◦ [Step 5] We have to look at every cell in the table, so this will take ≈ N steps.

Note 2.17 (On the abundance of ≈’s).
Why are we only saying ≈ X number of steps? Well, we don’t really have
a good notion for what a “step” is, so we can’t really afford to care deeply
about constants. For example, we’ll say 2N steps and N steps are about
the same.
However, it feels like there should be a meaningful difference between N
steps and N2 steps, regardless of how we define a step.
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If the argument for step 3 makes you feel a little uncomfortable, that’s great! It is a bit
hand-wavy. Let’s make it more precise:

◦ The first cell takes 1 step to fill. Just write the number 1.

◦ The second cell takes≈ 2 steps to fill. We have to check the previous 1 cell, then
do some arithmetic.

◦ In general, cell i takes ≈ i steps to fill, since we have to check the previous i− 1
cells, then do some arithmetic. Therefore, to fill the whole row, we will do

1 + 2 + · · ·+ (N − 1) +N =
N(N − 1)

2
≈ N2 steps

In general, things that form a “triangle” like this will take ≈ N2 steps because of
precisely this reasoning.
Now, it’s easy to see that the quadratic steps will dominate the total number of steps,
so the whole algorithm is N2. Based on our definition of efficient, we conclude that
this is in fact efficient. ,

Example 2.18 (A Naı̈ve Algorithm).
The “easy” algorithm to think of for the longest monotone subsequence prob-
lem is not efficient.

Without this clever approach, we may have thought to solve the problem as:

S: a sequence of distinct real numbers
N : length of S
LONGEST-MONOTONE(S):
1 List all the subsequences of the N numbers.
2 Go through all of them and check if they are monotone.

a If it is, compare it with the current largest, and keep
the larger one.

3 Return the largest one found.

We notice right away that step 1 involves constructing 2N subsequences, so the al-
gorithm is immediately not efficient. Step 2 is even worse, since chceking if a subse-
quence is monotone takes ≈ N steps, so step 2 will take ≈ N × 2N steps.
We say that this algorithm takes exponential time, and it is not efficient. ,
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2.4 Spherical Geometry and Inclusion- Exclusion

Before the days of the SAT, the following question appeared on a CMU entry exam:

Example 2.19 (Spherical Area).
Find the area of the shaded triangle given that the angles are 100°–80°–60°and
that the radius of the sphere it is drawn on is 10.

This was intended as an easy problem, and was a problem type taught to high school-
ers, so hopefully there’s a straightforward answer! Let’s try and build up some intu-
ition for the problem:

Angles Description Surface Area

90°–90°–90° An 8th of the sphere 1/8

60+°–60+°–60+° A tiny, basically equilateral triangle ≈ 0

300+°–300+°–300+° Everything but a tiny, equilateral triangle ≈ 1

180°–θ°–θ° A slice of the sphere θ/360

Using these (and you can try other ones too), we might guess:

Area (Fraction) =
sum of the angles− 180

720

To do this, we’ll use the Inclusion-Exclusion Principle:

Theorem 2.20 (Inclusion-Exclusion, with 3 sets).
Let A,B,C be sets. Then

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |B ∩ C| − |C ∩A|+ |A ∩B ∩ C|

Note 2.21 (A proof?).
We won’t prove this right now, but we’ll prove a more general version of
Inclusion-Exclusion later.

21



First, some more info on spherical geometry:

◦ The shortest path between two points is along what is called a “great circle”:

The great circle of two points can be found by considering the intersection of
the sphere and the plane through the two points and the center of the sphere.

◦ The center of a great circle coincides with the center of the sphere.

Let’s go ahead and prove this fact now:

Divide the sphere’s surface area as follows:

Set A: Set B: Set C:

We are interested in |A ∩B ∩ C|. Let x be the fraction of the surface area of the sphere
that the triangle covers. Now, with inclusion-exclusion, we get:

|A ∪B ∪ C|︸ ︷︷ ︸
1−x

= |A|︸︷︷︸
1/2

+ |B|︸︷︷︸
1/2

+ |C|︸︷︷︸
1/2

− |A ∩B|︸ ︷︷ ︸
γ/360

− |B ∩ C|︸ ︷︷ ︸
α/360

− |C ∩A|︸ ︷︷ ︸
β/360

+ |A ∩B ∩ C|︸ ︷︷ ︸
x

=⇒ α+ β + γ

360
− 1

2
= 2x =⇒ α+ β + γ − 180

360
= 2x =⇒ x =

α+ β + γ − 180

720
X

which is exactly what we wanted. ,
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Note 2.22 (Getting some of those areas).
Here’s an explanation of where some of the areas in the proof came from:

◦ |A ∪B ∪ C| = 1− x:
Everything on the sphere is symmetric, so in the picture, we see a
“mirror” of the triangle on the back of the sphere. A∪B∪C involves
shading everything but that triangle.

◦ |A ∩B| = γ
360 :

This forms a “slice” of the
sphere, which goes γ° around
the entire sphere.
The other 2-sets follow from the
same logic.

Note 2.23 (Solving the “easy” problem).
With this formula in hand, we see that the solution to the original problem
is

60

720
× 4π(102) =

100π

3

Now, we’ll prove the general form of the inclusion-exclusion principle:

Theorem 2.24 (Inclusion-Exclusion Principle).
Let A1, A2, · · · , An be sets. Then

|A1 ∪A2 ∪ · · · ∪An| = |A1|+ |A2|+ · · ·+ |An|
− |A1 ∩A2| − |A1 ∩A3| − · · · − |An−1 ∩An|
+ |A1 ∩A2 ∩A3|+ · · ·+ (all 3-sets)

...
± |A1 ∩A2 ∩ · · · ∩An|

Proof. We will show that everything in the left-hand side is counted exactly once.
Consider an arbitrary element x. Maybe we have the following layout:
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Observe that some of the sets will contain x, and others won’t. It’s easy to see which
1-sets x is in. For a 2-set, x is in it if and only if x is in the component 1-sets of the
2-set. Similarly for the 3-sets and so on.
Let’s say that x occurs in m of the sets, with 1 ≤ m ≤ n. Then x is counted:(

m

1

)
︸ ︷︷ ︸
1-sets

−
(
m

2

)
︸ ︷︷ ︸
2-sets

+

(
m

3

)
︸ ︷︷ ︸
3-sets

−
(
m

4

)
︸ ︷︷ ︸
4-sets

+ · · · ±
(
m

m

)
︸ ︷︷ ︸
m-sets

∓
(
m+ 1

m

)
± · · · ±

(
m

n

)
︸ ︷︷ ︸

all = 0

so all we have to do is show this equals 1 (which implies x is counted exactly once).
Consider the expansion of 0 = (1− 1)m:

0 = (1− 1)m =

(
m

0

)
(1)m(−1)0 +

(
m

1

)
(1)m−1(−1)1 + · · ·+

(
m

m

)
(1)0(−1)m

=

(
m

0

)
−
(
m

1

)
+

(
m

2

)
−
(
m

3

)
+ · · · ±

(
m

m

)
Moving all the terms other than

(
m
0

)
to the other side gives:(

m

1

)
−
(
m

2

)
+

(
m

3

)
− · · · ±

(
m

m

)
=

(
m

0

)
= 1

which is what we wanted to show.

2.5 Derangements

Definition 2.25 (Derangement).
A permutation with no fixed points is called a derangement.

Example 2.26 (The Party Hat Problem).
There are n people at a party, each with a different hat. In celebration, they all
throw their hats into the air, and catch a random one from the lot (they can get
their own again).
What is the probability that nobody gets their own hat back? Equivalently, find
the probability that a uniformly random permutation is a derangement.

The probability that this happens is:

Prob =
# of derangements

# of total permutations
= 1− # where someone keeps hat

n!

and so the problem reduces to finding the number of permutations where someone
keeps their hat. Let’s use inclusion-exclusion! Let

A1 = set of permutations where person #1 keeps their own hat
A2 = set of permutations where person #2 keeps their own hat

...
...

An = set of permutations where person #n keeps their own hat
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Now, by inclusion exclusion, we get that

|A1∪ · · · ∪An|
= |A1|+ |A2|+ · · ·+ |An| ⇒

(
n
1

)
(n− 1)! = n! ways

− |A1 ∩A2| − · · · − (all 2-sets) ⇒
(
n
2

)
(n− 2)! = 1

2! (n!) ways
+ |A1 ∩A2 ∩A3|+ · · ·+ (all 3-sets) ⇒

(
n
3

)
(n− 3)! = 1

3! (n!) ways
...

...

± |A1 ∩ · · · ∩An| ⇒
(
n
n

)
(n− n)! =

1

2!
(n!) = 1 way

How to get the numbers on the right? For the k-sets, pick the k people to keep their
hats (in

(
n
k

)
ways), then assign the rest in any order (in (n− k)! ways). Thus

|A1 ∪ · · · ∪An| = n!− 1

2!
· n! + 1

3!
· n!− 1

4!
· n! + · · ·

= n!

(
1− 1

2!
+

1

3!
− 1

4!
+ · · · ± 1

n!

)
Let’s first consider the “easy” case: the limiting probability as n→∞. We get:

Prob =
1

n!

n!−
(
n!

1!
− n!

2!
+

n!

3!
− · · · ± n!

n!

)
︸ ︷︷ ︸

call this (?), we’ll come back to it later

 = 1−
(
1

1!
− 1

2!
+

1

3!
− · · · ± 1

n!

)

but recall from calculus that the Taylor series for ex is given by

ex = f(0) + f ′(0)x+
1

2!
f ′′(0)x2 + · · ·+ 1

n!
f (n)(0)xn + · · ·

= 1 + x+
x2

2!
+

x3

3!
+ · · ·

and so we see that our probability is e−1 ≈ 0.3679 as n→∞. ,

Example 2.27 (But wait, you cheated!).
That’s all well and good, but what if we wanted the exact number of derange-
ments on n people (or by extension, the probability)? Can we do that?

The short answer is: it’s really close to n!/e. But how close is it?

Error =
n!

e
− (?) =

n!

e
−
(
n!

0!
− n!

1!
+

n!

2!
− n!

3!
+ · · · ± n!

n!

)
=

(
n!

0!
− n!

1!
+ · · ·

)
−
(
n!

0!
− n!

1!
+

n!

2!
− n!

3!
+ · · · ± n!

n!

)
= ∓ n!

(n+ 1)!
± n!

(n+ 2)!
∓ · · ·

This is really tiny. In particular, we can do some algebra to get:

Error ≤ 1

n+ 1
+

1

(n+ 1)(n+ 2)
+

1

(n+ 1)(n+ 2)(n+ 3)
+ · · · (by the4 ineq.)

<
1

(n+ 1)
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·
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Proposition 2.28 (Geometric Sum Formula).
The sum of an infinite geometric series (a, ar, ar2, ar3, · · · ) is given by

Σ =
first term

1− common ratio
=

a

1− r

We can use this fact to finish off our bound. We have a geometric sequence with initial
term 1

n+1 and a common ratio of 1
n+1 , so

Error <
1

(n+ 1)
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n+1

1− 1
n+1

=
1

(n+ 1)− 1
=

1

n

So now we know that the number of derangements is (strictly) within± 1
n of n!/e. For

n ≥ 2, there is only one integer within ± 1
n of n!/e, since 1

n gets too small, so we can
just use

Dn = number of derangments on n people = round

(
n!

e

)
It turns out that this formula holds for n = 1 as well (check it!), so we get the following
general formula:

Proposition 2.29 (nth Derangement Number).
The nth derangement number is given by Dn = round

(
n!
e

)
.

Note 2.30 (A Consequence).
As a result of this, we also get the cool fact that n!

e is always really close to
an integer. Neat!
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CHAPTER 3
Binomial Coefficients

Not all treasure’s silver and gold, mate.
—Jack Sparrow
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3.1 Pirates and Gold

We start off with an important counting technique in combinatorics:

Theorem 3.1 (The Pirates and Gold Theorem).
The number of ways to split n gold coins among k pirates is given by(

n+ k − 1

k − 1

)
=

(
n+ k − 1

n

)

Proof. We distribute coins in the following manner:

1. Draw n+ k − 1 empty slots.

2. Choose k − 1 of the slots to be dividers. This partitions the lines into k regions,
and leaves n slots empty (1 for each coin).

3. Pirate 1 gets the number of empty lines in region 1, pirate 2 the number in region
2, pirate 3 gets the number in region 3, etc.

This enumerates every possible distribution of coins. Thus, there are
(
n+k−1
k−1

)
ways to

distribute the gold.

Note 3.2 (Stars and Bars). The above theorem is also sometimes called
the stars and bars theorem since the arrangements of coins and dividers
look like:

? ? ? ? || ? | ? ?| or ? | ? | ? ?| ? | ? ?

This also illustrates that it is ok for more than one divider to be in between
two stars, and for dividers to be at the ends of the stars.

Example 3.3 (No Pirate Left Out).
What is the number of ways to split n gold coins among k pirates such that each
pirate is guaranteed to get at least 1 coin?

One way to do this is to just give 1 coin to each pirate, then to distribute the remaining
n− k coins among the pirates with the pirates and gold theorem. There are:(

(n− k) + k − 1

k − 1

)
=

(
n− 1

k − 1

)
ways to do this. In general, this strategy can be used to ensure the pirates get various
numbers of guaranteed coins. ,
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Example 3.4 (Multiple Kinds of Coins).
What is the number of ways for 5 pirates to split 20 gold and 40 silver coins?

We can first distribute the gold coins, then the silver. From the pirates and gold the-
orem, there are (

5 + 20− 1

5− 1

)
=

(
24

4

)
ways to distribute the gold, and(

5 + 40− 1

5− 1

)
=

(
44

4

)
ways to distribute the silver. Since the way we distribute one doesn’t affect the other,
we multiply the two to get

(
24
4

)
×
(
44
4

)
total ways. ,

Example 3.5 (Greedy Pirates).
What is the number of ways for 6 pirates to split 20 gold coins such that exactly
half of the pirates receive nothing, and every pirate in the other half receives
something?

We first choose the 3 pirates who receive nothing; there are
(
6
3

)
ways to do this. Then,

we distribute the 20 gold coins amongst the remaining 3 pirates. From example (3.3),
there are (

n− 1

k − 1

)
=

(
20− 1

3− 1

)
=

(
19

2

)
ways to do this such that each gets at least 1. We can’t allow any of these three pirates
to get zero or else there would be more than 3 pirates who get none. Thus, in total
there are

(
6
3

)
×
(
19
2

)
ways to distribute the coins. ,

Example 3.6 (A Generous Captain).
What is the number of ways for 5 pirates to split 20000 gold coins if their captain
refuses to accept a split which gives him more than 4000 gold coins?

The number of ways for the captain to receive less than or equal to 4000 coins is

# total distributions−# distributions where the captain gets more than 4000

The number of total distributions is given by the pirates and gold theorem, and is(
20000 + 5− 1

5− 1

)
=

(
20004

4

)
and the number where the captain gets more than 4000 can be found by giving the
captain 4001 gold coins to start, then distributing the rest. There are(

(20000− 4001) + 5− 1

5− 1

)
=

(
16003

4

)
so subtracting gives that there are

(
20004

4

)
−
(
16003

4

)
total ways. ,
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3.2 Lucas’s Theorem

Example 3.7 (Last Digit Problem).
What is the last digit of the binomial coefficient

(
250
125

)
?

This is easy. Just bust out a calculator, and we find that(
250

125

)
= 9120836692818571160008771866329594658284

. . .

. . . 7985411225264672245111235434562752

and so the answer is 2. We’re done, right? Well, what if we had to do it without a
calculator (or for really big numbers[1]). Could we still do it?
It turns out there is a “clean” way to solve this problem. To understand it, let’s try an
easier example: finding

(
17
3

)
(mod 3) (or the last digit of

(
17
3

)
in base-3).

Here’s the algorithm (important caveat, it only works for prime powered number
bases, we’ll come back to base-10 later):

1. Convert 17 and 7 to base-3:

1710 = 1223 and 710 = 213

2. Write the numbers out in a table, padding the smaller one with zeroes so they
are the same length:

1 2 2
0 2 1

3. Put binomial coefficient parentheses around them, and multiply:(
1

0

)
×
(
2

2

)
×
(
2

1

)
≡ 2 (mod 3)

That’s it! The last digit of
(
17
7

)
in base-3 is 2.

Theorem 3.8 (Lucas’s Theorem).
For any prime p, to calculate

(
n
k

)
(mod p):

◦ Write n in base-p as: (n1n2 · · ·nt)p

◦ Write k in base-p as: (k1k2 · · · kt)p

Importantly, we require n and k to have the same number of digits: t. Then(
n

k

)
≡
(
n1

k1

)(
n2

k2

)
· · ·
(
nt

kt

)
(mod p)

We will give an example below of how the proof proceeds for
(
17
7

)
, which can be

generalized to an arbitrary binomial coefficient.

[1] Adding just 2 zeroes to the end of each of the numbers in the example gives us a 7523-digit number...
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Proof for
(
17
7

)
. Remember that

(
17
7

)
counts the number of 7 element subsets of a set of

size 17. We can think of them as pictures which look like:

9 3 3
1 1

or

9 3 3
1 1

where the circled elements represent the dots we choose to include in our set of size
7. However, the two arrangements above seem to be “similar” in a way. We’ll define
similar in a second, but see if you can figure it out with the added information that
the picture below is not similar to either of the above (and the two above are similar
to each other):

9 3 3
1 1

Can you guess? We’ll define similar to mean that we can rotate the wheels of one pic-
ture to get to the second one. Our strategy will be to partition the sets into equivalence
classes based on this notion of similarity, then count the size of each class.
For example, the sizes of the equivalence classes for the above drawings are:

9 3 3
1 1 9× 1× 3× 1× 1

⇒ 27 ways to spin

9 3 3
1 1 3× 1× 3× 1× 1

⇒ 9 ways to spin

But notice that each of these is ≡ 0 (mod 3), so they will not contribute to our count.
Can we find one which is not zero?
We have to do all or nothing. The second we only choose part of a circle, it can spin and
that gives us a multiple of three. This is because the number of rotational symmetries
of a wheel is always a factor of the wheel size, and since our wheels are all powers of
3, the only possible factors are all multiples of 3.[2]

Therefore, we are interested in the number of ways to make (by adding) 7 from full
wheels, that is, from the numbers 9, 3, 3, 1, and 1.[3]

[2] This is why we require p to be prime.
[3] Since we are working in base-3, we have at most 2 of each of these numbers. The setup wouldn’t be

useful if we just drew 17 single dots. In base p, we would have at most p− 1 of each power of p.
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The base-3 representation of 7 tells us exactly how to do this! Since

710 = 0213

we know we need zero 9’s, two 3’s, and one 1, and that this is the unique way to get
to the number 7. How many ways can we do this? Consider the table:

9’s 3’s 1’s

Number we have 1 2 2

Number we need 0 2 1

so the number of ways to do this is just
(
1
0

)
×
(
2
2

)
×
(
2
1

)
, exactly what we wanted!

Note 3.9 (The Original Problem).
So how do we find the last digit of

(
250
125

)
?

From Lucas’s Theorem, we know that in base-5(
250

125

)
≡
(
2

1

)
×
(
0

0

)
×
(
0

0

)
×
(
0

0

)
≡ 2 (mod 5)

so the last digit is either a 2 or a 7. Then, doing the same in base-2 gives(
250

125

)
≡
(
?

?

)
× · · · ×

(
?

?

)
×
(
0

1

)
≡ 0 (mod 2)

(here, the last digits are all we need since we get a zero), so the binomial
coefficient ends in an even number. Thus, it ends in a 2.

3.3 Pascal’s Triangle and Related Identities

Consider the first 10 rows of Pascal’s triangle. If you look at the circled parts below,
you might notice an interesting pattern:

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1 8 28 56 70 56 28 8 1

1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

The sum of each long circled diagonal is equal to the single circled number to its
southwest! Let’s phrase this as a combinatorial identity.
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Theorem 3.10 (Hockey Stick Identity).
For integers n and k, we have(

n

0

)
+

(
n+ 1

1

)
+

(
n+ 2

2

)
+ · · ·+

(
n+ k

k

)
=

(
n+ k + 1

k

)
This is often written in summation notation as

k∑
j=0

(
n+ j

j

)
=

(
n+ k + 1

k

)

Proof. Using the fact that
(
n
0

)
=
(
n+1
0

)
, we can write(

n

0

)
+

(
n+ 1

1

)
+

(
n+ 2

2

)
+ · · ·+

(
n+ k

k

)
=

(
n+ 1

0

)
+

(
n+ 1

1

)
︸ ︷︷ ︸(n+2

2

)
by Pascal’s Identity

+

(
n+ 2

2

)
+ · · ·+

(
n+ k

k

)

=

(
n+ 2

1

)
+

(
n+ 2

2

)
︸ ︷︷ ︸(n+3

2

)
by Pascal’s Identity

+ · · ·+
(
n+ k

k

)

...

=

(
n+ k

k − 1

)
+

(
n+ k

k

)
=

(
n+ k + 1

k

)
which is what we wanted.

Since we used Pascal’s Identity in the above proof, let’s go ahead and prove it as well:

Theorem 3.11 (Pascal’s Identity).
For integers n and k, we have(

n

k

)
+

(
n

k + 1

)
=

(
n+ 1

k + 1

)

Proof. We’ll use counting in two ways:

◦ (RHS) This is the number of ways to pick k+1 objects from the set {1, · · · , n+1}.

◦ (LHS) We count the same set by splitting into two cases:

– case 1 If our objects include n+1, then we have to pick k more items from
the set {1, 2, · · · , n}. We can do this in

(
n
k

)
ways.

– case 2 If our objects don’t include n + 1, then we have to pick k + 1 more
from the set {1, 2, · · · , n}. We can do this in

(
n

k+1

)
ways.

Since our cases are disjoint, we have a total of
(
n
k

)
+
(

n
k+1

)
ways.

However, both sides count the same set, so the two expressions are equal.
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Theorem 3.12 (Vandermonde’s Convolution).
For any non-negative integers m,n, and k, we have

k∑
j=0

(
m

j

)(
n

k − j

)
=

(
m+ n

k

)

To understand this, it helps to see an example:(
4

0

)(
3

2

)
︸ ︷︷ ︸

Pick 0 from {1, 2, 3, 4}
and 2 from {5, 6, 7}

+

(
4

1

)(
3

1

)
︸ ︷︷ ︸

Pick 1 from {1, 2, 3, 4}
and 1 from {5, 6, 7}

+

(
4

2

)(
3

0

)
︸ ︷︷ ︸

Pick 2 from {1, 2, 3, 4}
and 0 from {5, 6, 7}

=

(
7

2

)

and so we see that all Vandermonde’s convolution is doing is splitting a set up into
two parts, and casing on how many elements we take from the first part.

Proof. Again, we count in two ways.

◦ (RHS) This is the number of ways to select a committee of size k from a group
of m men and n women.

◦ (LHS) We case on all the possible values of m: 0 to k. Given a j in that range,
there are

(
m
j

)(
n

k−j

)
ways to pick a group with j men, so in total, there are

k∑
j=0

(
m

j

)(
n

k − j

)
ways to build the committee.

Since both sides count the same set, the two expressions are equal.

Note 3.13 (The Sierpinski Triangle).
We’ll end this chapter with a cool fact about Pascal’s triangle:
If we take Pascal’s triangle, and erase all the even entries in it, we end up
with a pattern which looks like:

This is called a Sierpinski Triangle. If you want to try and prove this is
what you get, you can do so by induction.
(Hint: just write 1/0 for odd/even instead of the numbers. Then, apply Pascal’s Identity!)
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Part

II

Recurrence Relations
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CHAPTER 4
Linear Algebra and Recurrences

The Fibonacci Sequence turns out to be the key to understanding how nature de-
signs... and is... a part of the same ubiquitous music of the spheres that builds
harmony into atoms, molecules, crystals, shells, suns and galaxies and makes the
Universe sing.

—Guy Murchie
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4.0 Diagonalization Primer

Throughout this chapter, we are going to be interested in taking the nth power of a
matrix. Fortunately for us, there are techniques from linear algebra that allow us to
do this quickly. This is a process called diagonalization.

Example 4.1 (Diagonalizing a Matrix).
Write the matrix

A =

[
1 1
1 0

]
as PDP−1 for some diagonal matrix D and some invertible matrix P .

We want to find vectors v and corresponding scalars λ such that[
1 1
1 0

]
v = λv

such that v 6= 0 (why is this a useful condition?). We’ll call v an eigenvector with
corresponding eigenvalueλ. How might we find these? Note that our above condition
is equivalent to [

1 1
1 0

]
v =

[
λ 0
0 λ

]
v ⇐⇒

([
1 1
1 0

]
−
[
λ 0
0 λ

])
︸ ︷︷ ︸

need this to be singular

= 0

That matrix is singular when det (A− λI) = 0. So we just have to solve that equation:

det (A− λI) = 0 ⇐⇒ (1− λ)(−λ)− 1(1) = 0

⇐⇒ λ2 − λ− 1 = 0

⇐⇒ λ =
1±
√
5

2

so we’ve found the eigenvalues.

Proposition 4.2 (Distinct Eigenvalues Implies Diagonalizable ).
If the eigenvalues of A are all distinct, their corresponding eigenvectors are
linearly independent and therefore A is diagonalizable.

Now, using the proposition (4.2), we know that there are linearly independent vectors
v1 and v2 which correspond to those eigenvalues. That is, there are vectors such that[

1 1
1 0

]
v1 =

1 +
√
5

2︸ ︷︷ ︸
λ1

v1 and
[
1 1
1 0

]
v2 =

1−
√
5

2︸ ︷︷ ︸
λ2

v2
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Now, consider the effect of right multiplying by
[
v1 v2

]
. Let v1 = [ ab ] and v2 = [ cd ]:[

1 1
1 0

] [
a c
b d

]
=

[ [
1 1
1 0

] [
a
b

] [
1 1
1 0

] [
c
d

] ]
=

[
1+

√
5

2

[
a
b

]
1−

√
5

2

[
c
d

] ]

=

[
λ1a λ2c
λ1b λ2d

]
=

[
a c
b d

] [
λ1 0
0 λ2

]
But now, since v1 and v2 are linearly independent, we know that [ a c

b d ] has an inverse,
so we can write: [

1 1
1 0

]
=

[
a c
b d

]
︸ ︷︷ ︸

P

[
λ1 0
0 λ2

]
︸ ︷︷ ︸

D

[
a c
b d

]−1

︸ ︷︷ ︸
P−1

Now, when we take the nth power, we get[
1 1
1 0

]n
= (PDP−1)(PDP−1)(PDP−1) · · · (PDP−1)︸ ︷︷ ︸

n times

= PDnP−1

This is useful since taking the power of a diagonal matrix is easy:
[
λ1 0
0 λ2

]n
=
[
λn
1 0
0 λn

2

]
,

so in total, we get [
1 1
1 0

]n
= P

[
λn
1 0
0 λn

2

]
P−1

Note 4.3 (What is P ?).
If you wanted, you could calculate P and P−1 by finding the eigenvectors
v1 and v2, but we won’t need to for our purposes.

4.1 The Fibonacci Sequence

Example 4.4 (A Tiling Problem).
How many ways are there to tile a 1× n region:

image

using only 1× 1 squares ( ) and 1× 2 dominoes ( )?

Let’s try and work through some small cases:

n = 1 : 1 way :

n = 2 : 2 ways : or
n = 3 : 3 ways : or or

So it seems like we have our pattern! 1, 2, 3, 4, · · · . Unfortunately, this is wrong. Con-
sider the case of n = 4. There are 5 ways:

or or
or or
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So in general, we need a more careful approach to count these tilings. Let’s split it
into cases based on the last tile in the sequence:

number of tilings = number ending in a square + number ending in a domino

= n − 2 + n − 1

and so we get the relation an = an−1 + an−2. The Fibonacci sequence! ,

Definition 4.5 (The Fibonacci Sequence).
The Fibonacci sequence is the sequence of numbers:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584, · · ·

defined by the rules

F0 = 0, F1 = 1, and Fn = Fn−1 + Fn−2

Almost every identity about Fibonacci numbers can be proven by appealing to a tiling
argument based on the above:

Example 4.6 (A Fibonacci Identity).
Prove that F 2

n + F 2
n−1 = F2n−1.

Let’s prove this by counting in two ways:

◦ (RHS) This is how many ways there are to tile a 1 × 2n − 2 region using only
dominoes and squares.

◦ (LHS) We split into two cases:

case 1: The middle of the tile region
falls along a split.

︸ ︷︷ ︸
n−1 tiles

︸ ︷︷ ︸
n−1 tiles

Since the two halves are independent
of each other, the number of ways to
tile the whole region is

(# ways to tile n− 1)2 = F 2
n

case 2: The middle of the tile region
falls on a tile.

︸ ︷︷ ︸
n−2 tiles

︸ ︷︷ ︸
n−2 tiles

Since the two halves are independent
of each other, the number of ways to
tile the whole region is

(# ways to tile n− 2)2 = F 2
n−1

Thus, in total, there are F 2
n + F 2

n−1 ways to tile the region.

Since both sides count the same thing, the two expressions are equal. ,
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Note 4.7 (Why is the Fibonacci sequence in nature so much?).
DNA needs to encode structures about how to grow something, and a
natural way to do this is based solely on a few bits of information about
previous states.
Some possible ways to describe growth are:

an = an−1 ; no growth, something like a rock
an = 2an−1 ; rapid growth, such as bacteria
an = an−1 + an−2 ; next obvious choice for a growth pattern

and so natural selection settled on the Fibonacci sequence. QED?

Example 4.8 (Explicit Formula for Fibonacci).
Find a closed form formula for the nth Fibonacci number.

Notice that we can express the Fibonacci sequence in terms of a matrix equation as:[
1 1
1 0

] [
Fn

Fn−1

]
=

[
Fn+1

Fn

]
=⇒

[
1 1
1 0

]n [
1
0

]
=

[
Fn+1

Fn

]
So this problem reduces down to finding the nth power of the matrix [ 1 1

0 1 ]. We did
this in the previous section! Let ※ denote some constant which doesn’t depend on n.
We have that[

Fn+1

Fn

]
=

[
※ ※
※ ※

] [
λn
1 0
0 λn

2

] [
※ ※
※ ※

]−1 [
1
0

]
=

[
※ ※
※ ※

] [
λn
1 0
0 λn

2

] [
※
※

]

=

[
※ ※
※ ※

] [
λn
1 · ※

λn
2 · ※

]
=

[
λn
1 · ※ + λn

2 · ※
λn
1 · ※ + λn

2 · ※

]
and so equating the bottom rows, we get that there are constants (not depending on
n) α and β such that

Fn = α

(
1 +
√
5

2

)n

+ β

(
1−
√
5

2

)n

Let’s solve for the constants:

(n = 0) : 0 = α

(
1 +
√
5

2

)0

+ β

(
1−
√
5

2

)0

= α+ β

(n = 1) : 1 = α

(
1 +
√
5

2

)1

+ β

(
1−
√
5

2

)1

From here, we can just solve the system to get α = 1√
5

and β = − 1√
5
, so

Fn =
1√
5

(
1 +
√
5

2

)n

− 1√
5

(
1−
√
5

2

)n

,
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4.2 Solving Recurrences (Distinct Roots)

Example 4.9 (The Simplest Recurrence).
What is a general solution to the recurrence defined by the rules{

an = Aan−1

a0 = a0

It’s not hard to see that the recurrence is solved by an = a0 · An. You can prove this
by induction if you’d like.

Example 4.10 (Generalizing Fibonacci).
What is a general solution to the recurrence defined by the rules

an = Aan−1 +Ban−2

a0 = a0

a1 = a1

The solution mirrors the solution we came up with to the Fibonacci sequence. We
start by writing the recurrence as a matrix equation:[

A B
1 0

] [
an−1

an−2

]
=

[
an

an−1

]
=⇒

[
A B
1 0

]n [
a1
a0

]
=

[
an+1

an

]
Assuming that our matrix [A B

1 0 ] is diagonalizable, we can write[
A B
1 0

]n [
a1
a0

]
=

[
※ ※
※ ※

] [
λn
1 0
0 λn

2

] [
※ ※
※ ※

] [
※
※

]
where ※ denotes some number independent of n, but which can be based on A,B, a0,
and a1. Then

=

[
※ ※
※ ※

] [
λn
1 0
0 λn

2

] [
※
※

]
=

[
※ ※
※ ※

] [
λn
1 · ※

λn
2 · ※

]

=

[
λn
1 · ※ + λn

2 · ※
λn
1 · ※ + λn

2 · ※

]
BTW
=

[
an+1

an

]
and so we can write an = αλn

1 +βλn
2 , where α and β are functions of A,B, a0, and a1,

and λ1, λ2 are the eigenvalues of [A B
1 0 ].

Corollary 4.11 (Independence of Initial Values).
If you keep the same A and B, but change the values of a0 and a1, then the
solution to the recurrence is still of the form

an = α · λn
1 + β · λn

2
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Definition 4.12 (Characteristic Polynomial of a Recursion).
Let A be a matrix which represents a recursion (as above). Then, the character-
istic polynomial of the recursion is

det(A− λI) = 0

In our example, we get the characteristic polynomial

det

([
A B
1 0

]
− λI

)
= 0 =⇒ det

([
A− λ B

1 −λ

])
= 0 =⇒ −λ(A− λ)−B = 0

=⇒ λ2 −Aλ−B = 0

and so we can find λ1 and λ2 by finding the roots of this polynomial.
How do we get α and β? Plug in some convenient values of n (such as 0 and 1):

n = 0 : a0 = α+ β

n = 1 : a1 = αλ1 + βλ2

and then we can solve the resulting system to find α and β.

Note 4.13 (What issues can we run into?).
What if the system we get when solving for α and β gives us two of the
same equations?
This happens when λ1 = λ2. In this case, our matrices are typically not
even diagonalizable to begin with, so we’ll have to deal with it later.

4.3 Solving Recurrences with More Variables

Can we extend these ideas to 3 or more variables? Sure!

Example 4.14 (Solving 3-Term Linear Recurrences).
What is the general solution to the recurrence an = Aan−1 +Ban−2 + Can−3?

Start from the matrix equation:A B C
1 0 0
0 1 0

 an
an−1

an−2

 =

an+1

an
an−1

 =⇒

A B C
1 0 0
0 1 0

n a2a1
a0

 =


an


and then find eigenvalues to attempt to diagonalize:

det

A− λ B C
1 −λ 0
0 1 −λ

 = 0 =⇒ −
∣∣∣∣A− λ C

1 0

∣∣∣∣− λ

∣∣∣∣A− λ C
1 −λ

∣∣∣∣ = 0

=⇒ C − λ(λ2 −Aλ−B) = 0

=⇒ −λ3 +Aλ2 +Bλ+ C = 0
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Theorem 4.15 (Characteristic Polynomial of a Linear Recurrence).
The characteristic polynomial of the recurrence

an = C1an−1 + C2an−2 + · · ·+ Ckan−k

is λk − C1λ
k−1 − C2λ

k−2 − · · · − Ck−1λ
1 − Ck.

Proof. We won’t prove the general case (you can do so with induction if you’d like),
but will illustrate the approach for the k = 3 =⇒ k = 4 case.
For 4 terms, the matrix which represents the recurrence is

A =


A B C D
1 0 0 0
0 1 0 0
0 0 1 0


the characteristic polynomial is simply the equation obtained by taking the determi-
nant of A − λI and setting it equal to zero. Let’s do this through cofactor expansion
on the last column:

det



A− λ B C D

1 −λ 0 0
0 1 −λ 0
0 0 1 −λ


 = −D

∣∣∣∣∣∣
1 −λ 0
0 1 −λ
0 0 1

∣∣∣∣∣∣︸ ︷︷ ︸
= 1 since upper

triangular

+(−λ)

∣∣∣∣∣ previous (n = 3)
determinant

∣∣∣∣∣

= −D − λ
(
−λ3 +Aλ2 +Bλ+ C

)
= λ4 −Aλ3 −Bλ2 − Cλ−D

which is exactly what we wanted.

Example 4.16 (Some concrete characteristic polynomials).
The general “algebra-ese” formula can be kind of hard to interpret, so here are
some examples of recurrences and their characteristic polynomials:

an = Aan−1 +Ban−2 + Can−3 +Dan−4 + Ean−5

⇒ λ5 −Aλ4 −Bλ3 − Cλ2 −Dλ− E = 0

an = Aan−2 +Ban−4

⇒ λ4 −Aλ2 −B = 0

Ok, back to the n = 3 example. From here, we can solve the recurrence in three steps:

1. Solve the polynomial λ3 −Aλ2 −Bλ− C = 0. The roots are the eigenvalues.

2. If the roots are distinct, use the PDP−1 form to solve the matrix equation for
an. You’ll always get an = αλn

1 + βλn
2 + γλn

3 , where α, β, and γ are unknown.
(It’s a good exercise to check this for yourself!)

3. Use three values of n (typically 0, 1, and 2) to solve for α, β, and γ.

That’s it! ,
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CHAPTER 5
Generating Functions

A generating function is a clothesline on which we hang up a sequence of numbers
for display.

—Herbert Wilf
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5.1 Intro to Generating Functions

I claim that 1/89 is a magic number. Let’s look at it’s base-10 expansion:

1

89
= 0.011235...

It’s the Fibonacci sequence! This is amazing... well, until you look at the next few
digits in the decimal:

1

89
= 0.0112359550...

What happened? Actually, nothing happened. 1/89 is still a magical number. We just
have to read it a little bit more carefully:

0 . 0 1 1 2 3 5 9 5 5 0 · · ·

+ 1 1 2 3 5 8

1 3

2 1

3 4

5 5

8 9

So this actually works (if you’re willing to carry)! Let’s prove it:

Example 5.1 (The Fibonacci Fraction).
Prove that

∞∑
i=0

Fi

10i+1
=

1

89

We can do some clever algebra. Let RHS =
∑∞

i=0
Fi

10i+1

RHS =
F0

101
+

F1

102
+

F2

103
+

F3

104
+

F4

105
+ · · · expand sum

=
F0

101
+

F1

102
+


F0

103
+

F1

104
+

F2

105
+ · · ·

F1

103
+

F2

104
+

F3

105
+ · · ·

Fibonacci definition
(split up each term
starting at F2)

=
F0

101
+

F1

102
+


1

102

(
F0

101
+

F1

102
+

F2

103
+ · · ·

)
1

101

(
F0

101︸︷︷︸
F0=0

+
F1

102
+

F2

103
+ · · ·

) pull out common factors

=
F0

101
+

F1

102
+

1

102
(RHS) +

1

101
(RHS) this is our original sequence!

and so now we get that

− 1

100
= RHS

(
1

102
+

1

10
− 1

)
=⇒ − 1

100
= RHS

(
− 89

100

)
=⇒ RHS =

1

89

Great! This is exactly what we wanted. ,
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Note 5.2 (On Convergence).
You may recall from calculus that infinite series are finicky. For example,
consider

1 = 1 + (−1 + 1) + (−1 + 1) + · · ·

but then, just by regrouping the parentheses

0 = (1− 1) + (1− 1) + (1− 1) + · · ·

so in general, we have to be very careful with infinite series.
However, in this class, we will primarily use them as a way to guess a for-
mula for a recursion, which can always then be verified by induction. So
we won’t worry about convergence/divergence and the like here.

Note 5.3 (89 is a Fibonacci Number).
It might seem that something deep is going on here, since 89 is a Fibonacci
number. Sadly, this is just a coincidence, it doesn’t hold up in other bases.

However, this does motivate that it might be convenient to have a way to quickly figure
out the fraction which does this in other bases. To do this, we will think of a function

f(z) = F0z
0 + F1z

1 + F2z
2 + F3z

3 + · · ·

where the coefficients are the terms of the Fibonacci sequence.

Definition 5.4 (Generating Function).
The generating function f(z) of a recurrence with terms an is a function such
that

f(z) =

∞∑
i=0

anz
n = a0z

0 + a1z
1 + a2z

2 + · · ·

If we let f(z) be the generating function for the Fibonacci numbers, our example
showed that

0.011235 =
1

10
· f
(

1

10

)
Let’s try and find f(z) in general. We’ll use the same trick as before:

f(z) = F0z
0 + F1z

1 + F2z
2 + F3z

3 + · · ·

= F0z
0 + F1z

1 +

{
F0z

2 + F1z
3 + F4z

4 + · · · = z2f(z)

F1z
2 + F2z

3 + F3z
4 + · · · = zf(z) (because F0 = 0)

= 0 + z + zf(z) + z2f(z)

and so we get that

f(z)− zf(z)− z2f(z) = z =⇒ f(z)(1− z − z2) = z =⇒ f(z) =
z

1− z − z2

and so we have a function which, when you look at the coefficients of the Taylor series
of that function, will give you the Fibonacci numbers. Neat! ,
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Example 5.5 (Closed Form for Fibonacci with Generating Functions).
Use the generating function for the Fibonacci sequence, f(z), to find a closed
form expression for Fn.

From calculus, we know that one approach could be to use the Taylor series:

f(z) =

∞∑
k=0

f (k)(0)

k!
· xk =⇒ Fk =

f (k)(0)

k!

sinceFk is the coefficient on xk in f(z). However, this is not particularly useful. Calcu-
lating the kth derivative of f(z) gets painful very quickly. We need a better approach:
we’ll try and break f(z) up into simpler functions.
One family of functions which are easy to work with are those of the form:

1

1− cz
= 1 + cz + c2z2 + c3z3 + · · ·

by the geometric series formula. Note how easy it is to find the coefficient of zk for
these functions. So if we could break f(z) up into a sum of functions of this form,
that’d be great! We’ll use a partial fraction decomposition[1]:

−z
z2 + z − 1

=
−z

(z − φ1)(z − φ2)
where φ1, φ2 = roots of z2 + z − 1

=
A

z − φ1
+

B

z − φ2
for some constants A and B

Now, multiplying through by (z − φ1)(z − φ2) gives us the equation

−z = A(z − φ1) +B(z − φ2)

Now, we plug in values for z to get rid of one of the constants

◦ (z = φ1): We get −φ2 = B(φ2 − φ1) =⇒ B = φ2

φ1−φ2
.

◦ (z = φ1): We get −φ1 = A(φ1 − φ2) =⇒ A = −φ1

φ1−φ2
. (We won’t put the − in

the denominator so that these fractions have a common denominator.)

From here, it’s just an algebra slog:

−z
z2 + z − 1

=

−φ1

φ1−φ2

z − φ1
+

φ2

φ1−φ2

z − φ2
plug in for A and B

=

−φ1

φ1−φ2
· − 1

φ1

(z − φ1) · − 1
φ1

+

φ2

φ1−φ2
· − 1

φ2

(z − φ2) · − 1
φ1

multiply by a clever 1

We do this with the goal of making the denominator look like 1− cz, so that these fall
into our “nice” family of functions.

=
1

φ1 − φ2

(
1

1− 1
φ1
z
− 1

1− 1
φ2
z

)
simplify

[1] Hopefully you’ve seen this in calculus before; if not, we’ll do a bunch of examples of it throughout
this chapter. Also see: http://tutorial.math.lamar.edu/Classes/CalcII/PartialFractions.aspx
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From here, using the geometric series formula, we can write

1

1− 1
φ1
z
= 1 +

(
1

φ1

)
z +

(
1

φ1

)2

z2 + · · ·+
(

1

φ1

)n

zn + · · ·

1

1− 1
φ2
z
= 1 +

(
1

φ2

)
z +

(
1

φ2

)2

z2 + · · ·+
(

1

φ2

)n

zn + · · ·

and therefore

1

1− 1
φ1
z
− 1

1− 1
φ2
z
= (1− 1)z0 +

(
1

φ1
− 1

φ2

)
z1 + · · ·+

(
1

φn
1

− 1

φn
2

)
zn + · · ·

It follows that the coefficient on zn in f(z) is

coefficient on zn = Fn =
1

φ1 − φ2

(
1

φn
1

− 1

φn
2

)
= · · · = 1√

5

[(
1+

√
5

2

)n
−
(

1−
√
5

2

)n ]
which is a closed form expression for the nth Fibonacci number. From here, you can
prove this expression is valid by induction on n. ,

Note 5.6 (Why Generating Functions?).
You may ask why this is useful if we could already do this with matri-
ces. In general, this method is more adaptable; we’ll use it to solve recur-
rences whose characteristic polynomial has a repeated root, a situation we
couldn’t deal with using matrices.

5.2 Solving General Recurrences with Generating Functions

Theorem 5.7 (Solution to a 2-Term Linear Recurrence).
The linear recurrence an = Aan−1 + Ban−2 with initial conditions a0 and a1
solves to

an = α · λn
1 + β · λn

2

where λ1 and λ2 are the roots of the characteristic polynomial of the recurrence,
and α, β are some constants.

Proof. We’ll walk through the general steps which go into solving this using generat-
ing functions:

1 Write f(z) = a0 + a1z + a2z
2 + · · · .

2 Use the recurrence to find a closed form for f(z):

f(z) = a0 + a1z +

{
Aa1z

2 +Aa2z
3 + · · ·

Ba0z
2 +Ba1z

3 + · · ·

= a0 + a1z +Az(f(z)− a0) +Bz2 · f(z)

and so solving for f(z) we get

f(z) =
a0 + z(a1 −Aa0)

1−Az −Bz2
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3 Break f(z) into simpler parts. We want to write

f(z) =
α

1− cz
+

β

1− dz

where c, d are the roots of the char-
acteristic polynomial

Why can we use the characteristic polynomial to get the values c and d? Well,
we know we want

1−Az−Bz2 = (1− cz)(1− dz)

=⇒ 1−A 1
x −B 1

x2 = (1− c 1
x )(1− d 1

x ) let z = 1
x

=⇒ x2 −Ax−B = (x− c)(x− d) multiply by x2

and so c and d are just the roots of the characteristic polynomial.

4 Now we get

f(z) =
α

1− λ1z
+

β

1− λ2z
=

∞∑
n=0

α · λn
1 z

n +

∞∑
n=0

β · λn
1 z

n

=

∞∑
n=0

(α · λn
1 + β · λn

2 ) · zn

and so an = α · λn
1 + β · λn

2 .

From here, you can solve for α and β using two values for n, say n = 0 and n = 1.

5.3 Dealing with Repeated Roots

Example 5.8 (Another Linear Recurrence).
Find a solution to an = 6an−1 − 9an−2 with initial conditions a0 = 2, a1 = 9.

Recall from the previous section that the generating function for a recurrence of this
form is

f(z) =
a0 + z(a1 −Aa0)

1−Az −Bz2
=

2− 3z

1− 6z − 9z2

The characteristic polynomial is

x2 − 6x− 9 = 0 =⇒ (x− 3)2 = 0 =⇒ λ1, λ2 = 3

and so we want to write
2− 3z

1− 6z − 9z2
=

α

1− 3z
+

β

1− 3z

Uh-oh. If you try to do this, you will quickly see that you can’t. One way to see this is
that the LHS has a denominator of order 2, while the RHS has one of order 1. However,
we can use a trick from partial fractions and try to write

2− 3z

1− 6z − 9z2
=

α

1− 3z
+

β

(1− 3z)2

This is more manageable. Multiply through by (1− 3z)2 to get

2− 3z = α(1− 3z) + β =⇒

{
α+ β = 2

−3α = −3
=⇒

{
α = 1

β = 1

so we can write
2− 3z

1− 6z − 9z2
=

1

1− 3z
+

1

(1− 3z)2
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We know how to deal with the first term from before, but how do we deal with a
squared term in the denominator? We’ll differentiate!

1

1− 3z
=

∞∑
n=0

3nzn =⇒ 3

(1− 3z)2
=

∞∑
n=0

3nn · zn−1 take derivative

=⇒ 1

(1− 3z)2
=

∞∑
n=0

3n−1n · zn−1 divide by 3

=

∞∑
n=−1

3n(n+ 1) · zn reindex

=

∞∑
n=0

3n(n+ 1) · zn first term is 0

and so we can write f(z) as

f(z) =

∞∑
n=0

3n · zn +

∞∑
n=0

3n(n+ 1) · zn =

∞∑
n=0

(3n + (n+ 1)3n) · zn

and so an = 3n · (n+ 2). ,

Before we get to solving a general recurrence with repeated roots, we need to intro-
duce some additional machinery:

Definition 5.9 (Generalized Binomial Coefficient).
If α ∈ R and n ∈ N, we define the generalized binomial coefficient

(
α
n

)
as(

α

n

)
=

(α)n
n!

=
α(α− 1)(α− 2) · · · (α− n+ 1)

n!

Theorem 5.10 (Newton’s Generalized Binomial Formula).
For all x, y, r ∈ R, we have

(x+ y)r =

∞∑
n=0

(
r

n

)
xkyr−k

Proof. Recall from calculus that the Taylor series about 0 of a function f(x) is

f(x) = f(0) + f ′(0) · x+
f ′′(0)

2!
· x2 +

f ′′′(0)

3!
· x3 + · · · =

∞∑
n=0

f (n)(0)

n!
· xn

and so we can express (x+ y)r as an infinite series using its Taylor representation. It
suffices to find an expression for the nth derivative of (x+ y)r. Let y be fixed and let
x vary. Then

dn

dxn
(x+ y)r = r(r − 1)(r − 2) · · · (r − n+ 1)(x+ y)r−n

=⇒ f (n)(0) = r(r − 1)(r − 2) · · · (r − n+ 1) · yr−n

so we can write

(x+ y)r =

∞∑
n=0

r(r − 1)(r − 2) · · · (r − n+ 1)

n!
· xkyr−k =

∞∑
n=0

(
r

n

)
· xkyr−k

which is what we wanted.
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Theorem 5.11 (General Recurrences with Repeated Roots).
The recurrence an = A1an−1 + Anan−2 + · · ·+ Akan−k with initial conditions
a0, a1, · · · , ak and with characteristic polynomial (x− λ)k = 0 has solution

an = α · λn + β · nλn + · · ·+ ω · nk−1λn

for some constants α, β, · · · , ω.

Proof. Following the pattern from the example, we can express our generating func-
tion f(z) as

f(z) =
α

1− λz
+

β

(1− λz)2
+ · · ·+ ω

(1− λz)k

so it suffices to find a way to write (1− λz)−r as an infinite series for some general r.
We’ll use Newton’s Generalized Binomial Formula:

1

(1− λz)r
=

∞∑
n=0

(
−r
n

)
(−λz)n =

∞∑
n=0

(
−r
n

)
(−1)nλnzn

=

∞∑
n=0

(−r)(−r − 1)(−r − 2) · · · (−r − n+ 1)

n!
(−1)nλnzn

=

∞∑
n=0

r(r + 1)(r + 2) · · · (r + n− 1)

n!
· λnzn

=

∞∑
n=0

(
n+ r − 1

n

)
· λnzn

But notice that we can write(
n+ r − 1

n

)
= nr−1 + Junk of lower order

Let LO(nk) denote any collection of terms with order less than k. Then

f(z) =

∞∑
n=0

αλnzn +

∞∑
n=0

β(n+ LO(n))λnzn + · · ·+
∞∑

n=0

ω(nk−1 + LO(nk−1))λnzn

=

∞∑
n=0

(α′ + β′n+ γ′n2 + · · ·+ ω′nk−1) · λnzn

for some new constants α′, β′, γ′, · · · , ω′. We get this by combining each of the LO(−)
terms into a single term under a different constant. Therefore, we can write

an = α · λn + β · nλn + · · ·+ ω · nk−1λn

which is what we wanted to show.

Note 5.12 (Pirates and Gold Again?).
You may have noticed that the pirates and gold formula showed up in the
middle of this proof. What is it doing here? Well, we can think of

1

(1− λz)k
= (1 + λz + λ2z2 + · · · ) · · · (1 + λz + λ2z2 + · · · )︸ ︷︷ ︸

k times

and take λxizxi from the ith series. To get a coefficient of zn, we need
x1+x2+ · · ·+xk = n, which is the same as giving xi gold to the ith pirate,
out of n total. Hence, the pirates and gold formula!
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5.4 Recurrence Recap

Example 5.13 (Finding the Form of a Solution).
Find the general form of a solution to the recurrence

an = 19an−1 − 94an−2 + 102an−3 + 243an−4 − 297an−5 − 324an−6

with initial conditions a0, a1, · · · , a5.

The first step is to find our characteristic polynomial. We have

x6 − 19x5 + 94x4 − 102x3 − 243x2 + 297x+ 324 = 0

which factors to (x − 3)3(x + 1)2(x − 12) = 0.[2] Therefore, we can write a general
solution as

an = α · 3n + β · n3n + γ · n23n︸ ︷︷ ︸
from (x − 3)3

+ δ · (−1)n + ε · n(−1)n︸ ︷︷ ︸
from (x + 1)2

+ ζ · 12n︸ ︷︷ ︸
from (x − 12)

and then could painfully set up and solve a system of 6 equations using a0, a1, · · · , a5
to get the constants α, β, γ, δ, ε, and ζ. ,

Important 5.14 (The Swiss Army Knife of Discrete Math).
For all the fanciness going on with generating functions and matrix equa-
tions, it’s easy to forget the power of trying small examples, and guessing
an answer based on the pattern.
Trying small examples is the single most powerful tool you have in this
class. Be sure to not forget it!

Example 5.15 (A Nonlinear Recurrence).
Solve the recurrence an+1 = 2an + 1 with a0 = 0.

We’ll illustrate 3 different approaches to the problem:

1 The Swiss Army Knife Method
Let’s try some small values:

n 0 1 2 3 4 5 · · ·

an 0 1 3 7 15 31 · · ·

It looks a lot like an = 2n − 1. We can prove this by induction:

bc We have a0 = 0 and 20 − 1 = 0. Great!
is Assume true for n. Then an+1 = 2an + 1 = 2(2n − 1) + 1 = 2n+1 + 1.

so the claim holds for all n by induction.

[2] You definitely don’t need to know how to factor this. We just need an example with a bunch of
repeated roots so we can illustrate the techniques in this chapter.
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2 Generating Functions
Write f(z) = a0 + a1z + a2z

2 + · · · , and use the recurrence definition to get

f(z) = a0 + (2a0 + 1)z + (2a1 + 1)z2 + (2a2 + 1)z3 + · · · definition of an

=

{
2a0z + 2a1z

2 + 2a2z
3 + · · ·

a0 + z + z2 + z3 + · · ·
collect terms

= 2zf(z) + z(1 + z + z2 + · · · ) substitute for f(z)

= 2zf(z) +
z

1− z
geometric series

and so we get that

f(z)(1− 2z) =
z

1− z
=⇒ f(z) =

z

(1− z)(1− 2z)
=

A

1− z
+

B

1− 2z

for some constants A and B. This implies

f(z) = A

∞∑
i=0

zn +B

∞∑
i=0

2nzn =

∞∑
i=0

(A+B · 2n)zn

and so an = A+B · 2n for some A and B. Then, plugging in n = 0, 1 gives{
A+B = 0

A+ 2B = 1
=⇒ A = −1, B = 1

so an = 2n − 1. We can then prove this by induction as above.

3 Define a New Sequence
The sequence (an) is annoying because of the +1. To get rid of it, we can define
a new sequence bn = an + 1. Then

a0 = 0 =⇒ b0 = 1
an+1 = 2an + 1 =⇒ bn+1 = an+1 + 1 = 2an + 2 = 2(bn − 1) + 2 = 2bn

It’s pretty clear that bn = 2n (you don’t even need to do induction to prove this...
in 228 we can just say it’s obvious). Therefore

bn = 2n =⇒ an + 1 = 2n =⇒ an = 2n − 1

Nicely, we get the same answer from all three methods. Math works! ,
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CHAPTER 6
The Catalan Numbers

In the modern mathematical literature, Catalan numbers are wonderfully ubiq-
uitous. Althoughthey appear in a variety of disguises, we are so used to having
them around, it is perhaps hard toimagine a time when they were either unknown
or known but obscure and underappreciated

—Igor Pak
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6.1 What are the Catalan Numbers?

Definition 6.1 (The Catalan Numbers).
The nth Catalan number is given by the relations:

C0 = 1 and Cn+1 =

n∑
i=0

CiCn−i

The first few Catalan numbers are: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862...

Note 6.2 (Pattern Recognition).
If in your life you ever are working on a problem and the first few cases
give you the numbers 1, 1, 2, 5, 14, it will almost always be the Catalan
numbers. Very few other meaningful sequences start this way.

Theorem 6.3 (Closed Form for Cn).
The nth Catalan number is given by the expression

Cn =
1

n+ 1

(
2n

n

)

Proof. We’ll use generating functions. Let f(z) = C0 + C1z + C2z
2 + · · · . Then

f(z)2 = (C0 + C1z + C2z
2 + · · · )(C0 + C1z + C2z

2 + · · · )

=

∞∑
n=0

(C0Cn + C1Cn−1 + · · ·+ Cn−1C1 + CnC0)z
n

but note that this is the Catalan recurrence! So we can write

f(z)2 =

∞∑
n=0

Cn+1z
n = C1 + C2z + C3z

2 + · · ·

=⇒ zf(z)2 = C1z + C2z
2 + C3z

3 + · · · multiply by z

=⇒ zf(z)2 = f(z)− C0 definition of f(z)
=⇒ zf(z)2 − f(z) + 1 = 0 C0 = 1, rearrange

=⇒ f(z) =
1±
√
1− 4z

2z
solve for f(z)

Should we should use the + or the −? We know that f(0) = 1 and

lim
z→0+

1 +
√
1− 4z

2z
=∞ and lim

z→0+

1−
√
1− 4z

2z
= 1

so we want to use the negative root. Now, how do we deal with the
√
1− 4z? We can

use Newton’s Generalized Binomial Theorem:

√
1− 4z = (1− 4z)1/2 =

∞∑
n=0

(
1/2

n

)
(−4z)n =

∞∑
n=0

1
2

(
− 1

2

) (
− 3

2

)
· · ·
(
− 2n−3

2

)
n!

(−4z)n
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= −
∞∑

n=0

1 · 3 · 5 · · · 2n− 3

2nn!
· 4nzn = −

∞∑
n=0

1 · 3 · 5 · · · 2n− 3

n!
· 2nzn

= −
∞∑

n=0

1 · 3 · 5 · · · 2n− 3

n!
· 2 · 4 · 6 · · · 2n− 2

2 · 4 · 6 · · · 2n− 2
· 2nzn = −

∞∑
n=0

(2n− 2)!

n!(n− 1)!
· 2zn

= −
∞∑

n=0

2

n

(2n− 2)!

(n− 1)!(n− 1)!
· 2zn = −

∞∑
n=0

2

n

(
2(n− 1)

n− 1

)
· zn

This algebra is almost legit; technically the term in the sum is undefined forn = 0. You
can plug into the original equation to see that the n = 0 term should be 1. Therefore,
we can write f(z) as

f(z) =
1− (1−

∑∞
n=1

2
n

(
2(n−1)
n−1

)
· zn)

2z
=

∑∞
n=1

2
n

(
2(n−1)
n−1

)
· zn

2z

=

∞∑
n=1

1

n

(
2(n− 1)

n− 1

)
· zn−1 =

∞∑
n=0

1

n+ 1

(
2n

n

)
· zn

and so Cn = 1
n+1

(
2n
n

)
, as desired.

The Catalan numbers show up in many interesting combinatorics problems. We’ll go
through a few of them in this chapter. Here’s one:

Example 6.4 (Valid Sequences of Parentheses).
How many valid sequences of parentheses, with n each of ( and ) are there?
For example,

(())() is valid )()(() is not valid

We’ll call the answer Pn. Let’s try some small cases:

P1 = 1 ()

P2 = 2 ()(), or (())
P3 = 5 ()()(), ((())), (())(), ()(()), or (()())

This is looking awfully like the Catalan sequence. Let’s try to do a general form: with
n sets of parentheses, we get something that looks like:

( some smaller case︸ ︷︷ ︸
L1 parens

)( some smaller case︸ ︷︷ ︸
L2 parens

)

so to get the total, we can just add up all the locations of the )(. We know that L1 = 2k
for some k, and so L2 = n− 2k − 2 = 2(n− k − 1), so in total

Pn =
∑

all breaks

PL1/2 · PL2/2 =

n−1∑
k=0

PkP(n−1)−k

but this is just the Catalan recurrence, so Pn = Cn. ,

Note 6.5 (A Probabilistic Interpretation).
One way of viewing this is that if you randomly arrange n pairs of (), then
the probability of it being valid is 1

n+1 , since

Pr[valid sequence] =
# valid sequences

# total sequences
=

1
n+1

(
2n
n

)(
2n
n

) =
1

n+ 1
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6.2 Triangulations

Example 6.6 (Triangulations of a Convex Polygon).
How many triangulationsa are there of an n-sided convex polygon?
For example, when n = 4, the following are all the triangulations:

a We won’t define triangulation formally, but you can think of it as a way to break a shape up
into triangles while adding no new points.

Let’s try and work through some small examples. When n = 3, there is obviously
only 1 triangulation (just the triangle itself). From the example above, we know there
are 2 triangulations when n = 4. For n = 5, we get:

for a total of 5 triangulations, and when n = 6, we get

for a total of 14 triangulations. This certainly is beginning to look like the Catalan
sequence. Let’s see if we can prove it!
We claim that the number of triangulations of a convex n-gon is Cn−2, for n ≥ 3. Our
approach, as with the parentheses problem, will be to recover the Catalan recursion.
Call Tn the number of triangulations of an n-gon. Now, consider some edge in the
n-gon. It must be part of some triangle. Partition all the possible triangluations by
the third point of this triangle. For example:

or or or · · ·

In general, doing this for an n-sided polygon splits it into a k-gon and a (n − k + 1)-
gon, which we can recursively compute. If we sum over all the k’s, we’ll get that the
total number of triangluations is

Tn = T2Tn−1 + T3Tn−2 + · · ·+ Tn−2T3 + Tn−1T2

If we define T2 = 1 for convenience. Since the question never asks about 2-sided
polygons, we are allowed to choose whatever value we want for T2.
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Now, we know that{
T2 = 1

Tn = T2Tn−1 + T3Tn−2 + · · ·+ Tn−2T3 + Tn−1T2

which looks awfully like the Catalan recurrence. We conjecture that Tn = Cn−2. The
proof is by induction on n:

bc When n = 2, we have T2 = 1 and C2−2 = C0 = 1, so the base case holds.

is Assume the claim holds for all values smaller than or equal to n. Then

Tn+1 = T2Tn−1 + T3Tn−2 + · · ·+ Tn−2T3 + Tn−1T2

= C0Cn−2 + C1Cn−3 + · · ·+ Cn−3C1 + Cn−2C0

= Cn−1

by the definition of Cn.

Therefore, by induction, the claim holds for all n. ,

6.3 Mountain Pictures and More Grid Walks

Example 6.7 (Mountain Pictures).
How many mountain pictures with n↗ and n↘ are there?

Here is an example (and a non-example) of a mountain picture:

A valid mountain picture And an invalid one

In words, a mountain picture can never go below the ground, and must start and end
at ground level.
We can get a bijection between mountain pictures and valid sets of parentheses by
mapping

“↗ ” 7→ “(” and “↘ ” 7→ “)”
and so we see that there are exactly Cn mountain pictures with n↗ and n↘. ,

Example 6.8 (Grid Walks, Again...).
How many grid walks are there in an n×n grid which stay in the upper triangle
of the grid?

For example, this is a valid grid walk under
these rules.
Notice that this is the same problem as the
mountain pictures problem... just turn your
head 45°to the left.
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So we know that the number of these pictures is Cn. However, this time, we’ll give a
combinatorial proof of the closed form expression for Cn.
We know that all U/R walks must start with an ↑ and end with a→, otherwise they
will pass over the diagonal. (For the rest of the problem, we will only talk about grid
pictures of this form.) Therefore, the answer is

ANS =

# of total

−
# of crossing the diagonal


=

(
2(n− 1)

n− 1

)
− ???

so it suffices to find the number of U/R pictures which cross the diagonal. One way
to do this is to notice that paths that cross the diagonal are the same as paths which
touch the line shifted down/right by 1.

≡

Now, consider some path which touches the shifted line, and reflect it about the line
after the first time it touches the line. Here are some examples:

reflect
=⇒

•

reflect
=⇒

•

It looks like we are always ending up in the same place in the reflected pictures. Let’s
try and use this. We will try and set up a bijection between pictures which hit the
shifted line and pictures which end at the red node. The function we will consider is

f :
〈
Grid Pictures
Touching Line

〉
→
〈
Grid Pictures
Ending at •

〉
by f(P ) = P ′, where P

reflect
=⇒ P ′
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We have to show that the function is well-defined, an injection, and a surjection:

◦ well-defined. We are only considering grid pictures which touch the line, so
our reflection operation is valid.

◦ injective. We claim that you cannot get the same reflection twice. This is pretty
clear, since we can establish an inverse—just reflect again at the first point which
touches the line.

◦ surjective. We claim that we can get every picture which starts at (0,1) and ends
at the red dot. Since any such picture starts and ends on on opposite sides of the
line, it must cross it. Then, we can reflect at the first such point to get a picture
P which f(P ) gives us the picture we started with.

So we know that the number of pictures which cross the original diagonal is just the
number of pictures which go from (0,1) to the red dot. This is easier to count. We have
that:

n− 3

n+ 1

•

The paths we are interested in are the ones which go from the bottom-left corner of
the bold box to the top-right one. This is just(

(n− 3) + (n+ 1)

n+ 1

)
=

(
2n− 2

n+ 1

)
paths

since we can, for example, pick the location of the up arrows. Thus, we get that our
final answer is

ANS =

(
2n− 2

n− 1

)
−
(
2n− 2

n+ 1

)
This is good enough, but we’re going to do some more algebra to get it into the familiar
form we had previously:(

2n− 2

n− 1

)
−
(
2n− 2

n+ 1

)
=

(2n− 2)!

(n− 1)!(n− 1)!
− (2n− 2)!

(n+ 1)!(n− 3)!

=
(2n)!

n!n!
· n · n
2n(2n− 1)

− (2n)!

n!n!
· n(n− 1)(n− 2)

2n(2n− 1)(n+ 1)

=

(
2n

n

)[
n

2(2n− 1)
− (n− 1)(n− 2)

2(2n− 1)(n+ 1)

]
=

1

n+ 1

(
2n

n

)
[1]

which is the expression for Cn we had previously. ,

Note 6.9 (Forcing Binomial Coefficients).
The above algebra illustrates a general technique of moving from one bi-
nomial coefficient to another by just writing it, and multiplying by the
relevant fraction to compensate.

[1] I won’t bore you with the algebra from here... just work away at the stuff in the [· · · ].
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Part

III

Graph Theory
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CHAPTER 7
Introduction to Graphs

Graphs are what graphic designers use when they have to make smart looking
math. Hence the name!

—Po-Shen Loh
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7.1 What is a Graph?

Definition 7.1 (Graph).
Informally, a graph is any picture you can make with
vertices and edges, such as the one to the right.
Formally, a graph G is a tuple G = (V,E) where

◦ V is a nonempty set of vertices; and

◦ E is a set of edges, which are 2-element subsets of
the vertex set V (i.e. {v1, v2} s.t. v1, v2 ∈ V )

Note that our definition of a graph disallows the following:

◦ Multiple Edges:
Since E is a set, it cannot have the same edge in it twice.
Therefore, our graphs cannot have the construction seen
to the right in them.

◦ Self Loops:
Since the elements of R are sets, they cannot have the
same vertex in them twice. Therefore, our graphs can-
not have the construction seen to the right in them.

Sometimes, we call graphs without either of these features simple graphs. In this class,
when we say graph, we mean a simple graph.

Note 7.2 (What Are Graphs Useful For?).
Graphs come up in many different fields, for example:

◦ In biology, we can represent proteins as vertices in a graph, and
edges relate similar proteins.

◦ Facebook uses graph to analyze social relationships, with the ver-
tices representing people, and edges representing friendships.

◦ Graphic designers use graphs as examples of smart looking math ,

Example 7.3 (Shaking Hands).
Can there be a party with 7 people in which each person shakes exactly 3 other
people’s hands?

No, there can’t. To see this, consider a count of total number of hands shaken. When-
ever a person shakes another’s hand, they add 1 to the count. In this way, every hand-
shake between 2 people adds 2 to the count: 1 from each person.
If 7 people each shake 3 other people’s hands, then the count should end at 21. How-
ever, each handshake adds 2 to the count, so it can never be odd. Therefore, this setup
is impossible. ,
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Definition 7.4 (Lots of Graph Related Terminology).
Let G = (V,E) be a graph. Then

◦ If e = {u, v} ∈ E is an edge in the graph, we say that u and v are neighbors
or adjacent. We also say u and v are incident to e.

◦ For v ∈ V , define the neighborhood of v, denoted N(v), as the set of all
neighbors of v, i.e. N(v) = {u | {v, u} ∈ E}.

◦ For v ∈ V , define the degree of v, denoted deg(v), as the number of edges
incident to v. In a simple graph, deg(v) = |N(v)|.

Lemma 7.5 (Handshake Lemma).
For any graph G = (V,E), we have∑

v∈V

deg(v) = 2|E|

Proof. We prove the equality by double counting. For each vertex v ∈ V , put a token
on all the edges it is incident to. We will count the total number of tokens.

◦ Every vertex v is incident to deg(v) edges, so the total number of tokens put is∑
v∈V deg(v).

◦ Each edge u, v in the graph will get two tokens, one from vertex u and one from
vertex v. So the total number of tokens put is 2|E|.

Since each of these expressions counts the same set, we get
∑

v∈V deg(v) = 2|E|.

Definition 7.6 (d-Regular Graph).
A graph G = (V,E) is called d-regular if deg(v) = d for all v ∈ V .

Example 7.7 (A 4-regular graph).
Can we construct a 4-regular graph on 7 vertices?

Yes. The intuition behind the construction is to start with a symmetric layout of 7
vertices, and try to keep the circular symmetry. The final graph is below:
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Definition 7.8 (Complete Graph on n Vertices).
The complete graph on n vertices, denoted Kn is the graph with n vertices and
all
(
n
2

)
edges. Kn is also often called a clique on n vertices.

For example, here are 2 complete graphs:

The complete graph K4 The complete graph K10

Definition 7.9 (Walks, Paths and Cycles).
Let G = (V,E) be a graph.
◦ A walk is a sequence of not-necessarily-distinct, pairwise-adjacent vertices

◦ A path is a sequence of distinct, pairwise-adjacent vertices

◦ A cycle is a path for which the first and last vertices are actually adjacent.
If a cycle has k vertices, we say it is a k-cycle.

◦ Two vertices are connected if there is a path from one to the other.

Definition 7.10 (Graph Containment, Subgraph).
A graph G = (V,E) contains a graph G′ = (V ′, E′) if V ′ ⊆ V and E′ ⊆ E. If
this is the case, we say that G′ is a subgraph of G.

Here are some examples:

The complete graph K5

contains a 5-cycle C5

The complete graph K6

contains a K4

Note 7.11 (On Drawing Graphs).
Even though we are drawing the subgraphs on top of the original graph
and thus not changing the shape of the subgraph, it is totally fine to draw
subgraphs with a different shape to how it appears in the original.
How we draw a graph won’t change the important properties of a graph.
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Example 7.12 (Cycles in a Kn).
How many n-cycles are there in the complete graph on n vertices?

A good first guess might be n!, since we need to arrange n vertices. However, we’re
going to do a lot of overcounting. For example, these cycles are all the same:

(1, 2, 3, 4, 1) (2, 3, 4, 1, 2) (3, 4, 1, 2, 3) (4, 1, 2, 3, 4)

so we need to divide by n. However, we’re not done yet, since the direction we write
the cycle in doesn’t matter. For example,

(1, 2, 3, 4, 1) and (1, 4, 3, 2, 1)

are the same cycle. So we actually divide by 2n. In total, we get n!/2n n-cycles. ,

Definition 7.13 (Connected Graph, Connected Component).
A connected graph is a graph in which any two of its vertices are connected.
A connected component is a maximal connected subgraph. That is, a subgraph
where adding any additional vertex breaks the property that it is connected.

For example, this graph is not connected. It has 3 connected components:

Adding two edges allows us to turn it into a connected graph.

7.2 Our First Big Graph Theorem

Theorem 7.14 (Conditions for a Cycle).
Every graph with n vertices and at least n edges contains a cycle (when n ≥ 3).
In addition, this bound is tight.

The idea is that if you start at a vertex, and keep “walking” around the graph avoiding
previously visited vertices, you have to cross off a new vertex every step, so you can
take at most n− 1 steps. We’ll make this argument formal below:

Proof. By induction on n ≥ 3:

bc There is only one graph on 3 vertices with 3-edges: K3. This graph clearly con-
tains a cycle.

is Assume the claim holds for n− 1 and consider an arbitrary graph on n vertices
with at least n edges. There are three cases:

c1 If the graph has a degree 0 vertex, remove it to get a graph on n−1 vertices
with n edges. This graph contains a cycle by the IH. Adding the isolated
vertex back doesn’t disturb this cycle, so the original graph had a cycle as
well.
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c2 If the graph has a degree 1 vertex, remove it to get a graph on n−1 vertices
withn−1 edges. This graph contains a cycle by the IH. Adding the removed
vertex back doesn’t disturb this cycle, so the original graph had a cycle as
well.

c3 Now, we are in a case where the graph has no vertices of degree 0 or 1. We
find a cycle as follows:
Start with an arbitrary vertex, and move to an adjacent one. Then, since
every vertex has degree at least 2, we can exit that vertex through another
edge and repeat.
Since the graph only has a finite number of vertices, eventually we will
reach a vertex we previously visited, creating a cycle.
In addition, since we never backtrack, the cycle will have at least 3 vertices.

By induction, the claim holds for any n.
All we have left to do is to show that this bound is tight. To see this, consider the
n-vertex path, denoted Pn:

· · ·

This graph has n− 1 edges, n vertices, and no cycles.

Note 7.15 (Extremal Graph Theory).
This theorem is an example of a result from extremal graph theory, which
is the branch of graph theory concerned with finding the biggest/smallest
value for which a graph is forced to have a certain property.

Note 7.16 (Induction on Graphs).
Induction on graphs is an incredibly powerful tool, since so many graph
problems end up reducing to a problem which looks suspiciously like the
original one, but slightly smaller.
However, it is also very easy to get wrong. Here are the steps you should
follow when doing graph induction (on vertices):

1. Prove the base case.

2. Assume the claim holds for n− 1 vertices.

3. Consider an arbitrary graph on n vertices.

4. Remove a vertex to reduce the problem to one covered by the induc-
tion hypothesis.

5. Apply the induction hypothesis to argue for the existence of some-
thing.

6. Argue that the existence of your something is preserved when you
add the removed vertex back into the graph.

Similar steps work for induction on edges/other features of graphs.
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CHAPTER 8
Trees

A picture like this is called a tree. If you want to know why the tree is growing
upside down, ask the computer scientists who introduced this convention. (The
conventional wisdom is that they never went out of the room, so they never saw a
real tree.)

—László Lovász, József Pelikán, Katalin Vesztergombi
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8.1 The Many Definitions of a Tree

In the last chapter, we were looking at graphs which had a lot of edges, but no cycles.
In doing this, we found that if a graph had n vertices, the best we could do is to add
n− 1 edges. For example

Pn
n vertices
n− 1 edges

Star n vertices
n− 1 edges

Rooted
Tree

n vertices
n− 1 edges

In the last example, call the node in red the root of the tree. In fact all the above exam-
ples can be drawn as rooted trees (try and do so).
Can all high edge, but acyclic graphs be drawn as a “tree?” First, let’s get a definition
of a tree to work with:

Definition 8.1 (Tree [def 1]).
A tree is any structure which can be built recursively through the tree growing
procedure, defined as:

◦ A single node is a tree.

◦ If T = (V,E) is a tree, then T ′ = (V ∪ {vnew}, E ∪
{
{vnew, v}

}
) is a tree

for any v ∈ V and vnew /∈ V .

That is, a tree is anything that can be built up by repeatedly adding a new vertex
and connecting it with exactly 1 edge to an existing vertex.

For example, this is a tree, which is called a complete binary tree

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

The numbers represent one possible order the vertices could have been added in. Can
you think of others? There are a bunch.
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However, often a recursive definition like [def 1] can be hard to work with... plus, it
doesn’t really tell us much about what a tree is! Where did our ideas of acyclicity and
lots of edges go? Let’s give a different definition of a tree more in line with this:

Definition 8.2 (Tree [def 2]).
A tree is a connected, acyclic graph.

Proof. It may be odd to see a proof of a definition, but in order to warrant calling this
a definition, we have to show that it is consistent with our previous definition.

(Any tree satisfying [def 1] satisfies [def 2]):
We proceed by structural induction

bc Certainly a single node is a connected, acyclic graph.

is Assume T = (V,E) is a connected, acyclic graph which was built by the growing
procedure. Let T ′ = (V ∪ {vnew}, E ∪ {vnew—v}) for some arbitrary v ∈ V .
We have to show that T ′ is still connected and acyclic:

connected Let v1, v2 ∈ T ′ be arbitrary. If v1, v1 ∈ T , then they are connected
by our inductive hypothesis. Otherwise, assume WLOG v1 ∈ T
and v2 = vnew.
Then v2—vk is an edge for some vk ∈ T by the growing procedure,
and vk is connected to v1 sinceT is connected and v1, vk ∈ T . Thus,
we can concatenate the paths to get v2—vk—v1, so v1—v2.

acyclic We need to rule out that adding the new edge/vertex creates a
cycle (this is the only way for there to be a cycle since T was acyclic
by the IH). If it did, then vnew must be in a cycle, so deg(vnew) ≥ 2.
But by the growing procedure, deg(vnew) = 1, since it is connected
to T by exactly one edge. Thus, adding vnew does not create a cycle.

So the claim holds by structural induction.

(Any tree satisfying [def 2] satisfies [def 1])
By induction on |V |

bc The only connected, acyclic graph with |V | = 1 is a single node, which is the
base case of the growing procedure.

is Assume any n vertex connected, acyclic graph can be grown, and let G be an
arbitrary connected, acyclic graph on n + 1 vertices. We claim G contains a
vertex with deg(v) = 1.
Assume otherwise. Then, since G is connected, each vertex has degree ≥ 2. By
the handshake lemma, we get

2|E| =
∑
v∈V

deg(V ) ≥ 2|V | =⇒ |E| ≥ |V |

and so G must contain a cycle, a contradiction.
Now, since G contains a vertex of degree 1, remove it and it’s incident edge to
get G′. By the IH, G′ can be grown. But then, adding the removed edge and
vertex back is a valid growing operation, and so G can be grown.

Therefore, the claim holds by induction.
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Note 8.3 (Structural Induction).
In the above proof, we used a type of induction called structural induction,
which is a technique for reasoning about recursively defined structures.
A proof by structural induction typically looks like:

◦ Base Case(s). Prove the property of interest for all base cases of your
recursive definition.

◦ Inductive Step. Prove that application of the recursive rule(s) pre-
serves the property of interest.

In fact, you’ve already been doing structural induction for your whole
mathematical career. Regular induction on the naturals is just structural
induction with the naturals defined by the rules:

0 ∈ N and if n ∈ N, then n+ 1 ∈ N

so no stress. This isn’t really anything different.

In proving those definitions are equivalent, we actually also proved another interest-
ing result, and motivated another definition:

Definition 8.4 (Leaf).
A vertex of degree 1 in a tree is called a leaf.

Corollary 8.5 (Every Tree Has a Leaf).
Every tree T = (V,E) with |V | ≥ 2 contains a leaf.a

a We proved this as part of [def 2] =⇒ [def 1]

You may be temped to think that we are done giving definitions of graphs. We aren’t.
There are actually many more ways we could define a tree; we’ll cover one more here,
which generalizes [def 2]. This will be our working definition of a tree going forward:

Definition 8.6 (Tree).
A tree is a graph T = (V,E) which satisfies any two of the following properties:

(i) connected

(ii) acyclic

(iii) |E| = |V | − 1

In addition, if a graph has any two of these properties, it also has the third.

Buckle up... we’ve got a lot to prove here!
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Proof. We know that any connected, acyclic graph is a tree, so it suffices to show that:

1. If G = (V,E) is connected, then G acyclic ⇐⇒ |E| = |V | − 1; and

2. If G = (V,E) is acyclic, then G is connected ⇐⇒ |E| = |V | − 1.

Before reading on, take a minute to convince yourself that this is enough to prove the
claims in definition 8.6.

— (claim 1) —

We’ll first prove that |E| ≥ |V |−1. Remove all the edges of G; the resulting graph has
|V | connected components. Now, imagine adding the edges back one-by-one. Each
time we do this, either:

(i) We connect two different connected components by putting an edge between
two vertices that are not already connected (which does not create a cycle); or

(ii) We put an edge between two vertices that are already connected, creating a cycle

Now, note that (i) causes the number of connected components to go down by 1, while
(ii) keeps it the same. Since we started with |V | connected components, and ended
with 1, we must have done (i) at least |V | − 1 times, so there are at least that many
edges. Now, to prove the claim:

(⇒) Assume G is connected and acyclic. From the above, we know |E| ≥ |V | − 1.
But we’ve previously shown that any acyclic graph satisfies |E| ≤ |V |−1. Thus,
|E| = |V | − 1, as desired.

(⇐) Assume G is connected and |E| = |V | − 1. Then, in the above procedure, to
build G, we must have only done step (i), and thus could never have created a
cycle. Thus, G is acyclic.

— (claim 2) —

We’ll prove each direction separately:

(⇒) Assume G = (V,E) is acyclic and connected. Then we’re already done, since by
claim 1 G also satisfies |E| = |V | − 1.

(⇐) Assume G = (V,E) is acyclic and satisfies |E| = |V | − 1. Then, in the above
building procedure, we must have only done step (i), since doing step (ii) would
create a cycle. Since |E| = |V |−1, we do this exactly |V |−1 times, so the number
of connected components at the end of the procedure is:

|V | − (|V | − 1) = 1 connected component

and so G is connected.

Therefore, this is an equivalent definition of a tree, and any having any two of the
listed properties immediately implies we have the third.
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8.2 Encodings

Example 8.7 (Counting Trees).
How many trees are there on n vertices?

I don’t know about you, but I don’t see an obvious way to approach this problem, so
let’s try some small examples. When n = 1, there’s only 1 tree:

When n = 2, there just 1 tree:

When n = 3, there is still just 1 tree:

so the pattern is obvious, right? There’s just 1 tree! Well, no, obviously that doesn’t
hold up going forward. When n = 4, there are 2 trees:

When n = 5 there are 3 trees:

And finally, when n = 6, there are 6 trees:

Great, so our pattern is 1, 1, 1, 2, 3, 6, · · · , which is, well, I still don’t know. Plus, this
is starting to get painful and there’s no obvious recurrence or anything which would
let us continue upwards with any ease.
For example, try and find all 11 trees with 7 vertices. If somehow you get through
that, try and find all 23 with 8. It’s a painful exercise.
However, we’re not alone in not knowing where to go from here. In fact, no one does.
The number of trees on n vertices is still not known. So our approach to this problem
will be to call the answer Tn and just move on.
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Note 8.8 (Bounds on Tn).
Although an exact formula for Tn is not known, it isn’t too hard to show
that

nn−2

n!
≤ Tn ≤ 4n−1

This is left as an exercise.

This problem may be very difficult, but there is a different, similar problem that we
will be able to tackle:

Example 8.9 (Number of Labeled Trees).
How many labeled trees are there on n vertices?

Let’s run through our small examples again. When n = 1, there is still only 1 labeled
tree:

1

and when n = 2, there is still only 1 labeled tree. This is because we still allow graphs
to be rotated, mirrored, etc.

1 2

But now, when n = 3, there are 3 labeled trees, in contrast with the 1 unlabeled tree
we had before:

1

2 3

2

1 3

3

1 2

For n = 4, it will be painful to list all the labeled trees out (there will end up being
16 of them), but we can use a different trick. Instead, we’ll count how many labeled
trees there are for each kind of unlabeled tree:

There are 4! ways to assign labels 1, 2, 3, 4 to the vertices in
this graph. Of these, we double count by a factor of 2, since
we can mirror the graph and not change it.
total: 4!

2 = 12 trees

There are only 4 trees of this form. Once we pick the node
in the middle, the placement of the others doesn’t matter,
since we can rotate the graph.
total: 4!

3! = 4 trees

So in total for n = 4, we get 16 labeled trees.
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For the rest, we can use a similar logic. I’ll simply provide the numbers of each kind
of graph here. It’s a good exercise to work through the counting arguments. When
n = 5 there are 125 labeled trees:

5!
2! = 60 trees 5!

4! = 5 trees 5!
2! = 60 trees

And finally, when n = 6, there are 1296 labeled trees:

6!
2! = 360 trees 6!

5! = 6 trees 6!
2! = 360 trees

6!
2! = 360 trees 6!

2! = 360 trees 6!
2! = 360 trees

Alright, now our pattern is 1, 1, 3, 16, 125, 1296, · · · which we can write more sugges-
tively as 1, 20, 31, 42, 53, 64, · · · . At this point, we make our guess:

Theorem 8.10 (Cayley’s Theorem).
There are nn−2 labeled trees on n vertices.

Note 8.11 (When n = 1...).
You may notice that Cayley’s formula actually works for when n = 1 as
well, since 1−1 = 1. This is purely a coincidence, but is cool.

Before we jump into the proof of this claim, let’s take a moment to gain some intuition
for how good a bound this actually is. Consider two more obvious ways to upper
bound the number of labeled trees:

1. There are only 2

(
n
2

)
labeled graphs, so certainly this is an upper bound for the

number of labeled trees.
For comparison, we have

2
(n
2

)
≈ 2n

2

and nn−2 ≈
(
2logn

)n−2 ≈ 2n logn

so Cayley’s theorem is a real improvement.[1]

[1] O(logn) is much, much better than O(n). For example, when n = 1, 000, 000, logn is just 6. So
shaving one of the factors of n down to a logn is impressive. If you want more justification, try telling a
computer scientist that O(n2) is “really about the same” as O(n logn).
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2. Since n-vertex trees have only n− 1 edges, we can get the bound:

# labeled trees ≤
( (

n
2

)
n− 1

)
≤
(

n2

n− 1

)
≤
(
n2
)n−1

= n2n−2

This is actually pretty close!

The last approach above is actually quite good. To motivate the proof of Cayley’s
Theorem, we’ll present that idea in a slightly different form.

Definition 8.12 (Encoding).
An encoding of a set of objects X is an injective function

Enc : X ↪→ 〈set of encodings〉

where our set of encodings is typically a simplified representation of an object,
expressible with only a few symbols.

Important 8.13 (Using Encodings to get an Upper Bound).
Since an encoding is by definition an injective function, we get as a conse-
quence that |X| ≤ |〈set of encodings〉|. If 〈set of encodings〉 is an easy set
to count, then we can use this to establish an upper bound on |X|.
Further, if we can prove that our encoding is actually a bijection, then we
can use this technique to determine exactly the size of X .

Turning back to counting trees, let’s build an encoding for labeled trees, and use it to
get an upper bound. Given a tree, we’ll encode it by simply listing its edges in a table:

8

1

5

6 4

3

2 7 ⇒
5 1 1 2 6 4 5

4 7 8 1 5 3 1︸ ︷︷ ︸
|V |−1 columns

Certainly this mapping is injective (different trees will never end up with the same
table, since they would have at least 1 different edge). Therefore, we get that

# of n-vertex trees ≤ |〈set of encodings〉| =
(
n

2

)n−1

≈ n2n−2

which is the result we got before with a counting argument.
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Note 8.14 (But this isn’t a function...).
Yep, this mapping we defined above from trees to tables isn’t actually a
function. The same tree can have multiple tables associated with it, so it
isn’t well defined.
However, this isn’t actually a problem for our counting arguments, since it
only makes our bounds looser. However, if the function being ill-defined
makes you uncomfortable, just think of a dictator arbitrarily defining
which of the many possible outcomes is the “right” one for each possi-
ble tree.a All of our analysis will still stand either way.

a For this example, you could choose to, say, order the columns lexicographically.

This encoding is a good start, but it’s wasteful, since so many tables represent the
same tree. Can we do better?
One idea is to encode the tree as follows:

8

1

5

6 4

3

2 7 ⇒
vertex 1 2 3 4 5 6 7

parent 8 1 4 5 1 5 1︸ ︷︷ ︸
|V |−1 columns

where we root the tree at the largest vertex, write the numbers 1, · · · , n− 1 on the top
row, and write the parent of the vertex below it.
But now, the top row is useless information, there’s no need to actually write it since
it is always 1, · · · , n− 1, so we could have equivalently encoded the tree as:

8 1 4 5 1 5 1

if we assume the tree is rooted at 8 (one way to infer this is from the fact that 8 is the
largest number present in the encoding... why is this enough?) So now:

# of n-vertex trees ≤ |〈set of encodings〉| ≤ nn−1

which is really close to what we wanted. We could continue to refine this bound by,
say, disallowing encodings which contain self-loops and cycles in our set of valid en-
codings, but that defeats the purpose of an encoding: to be an easier set to count. This
leads us to our final encoding: the Prüfer code.
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8.3 The Prüfer Code

Definition 8.15 (Extended Prüfer Code).
The Prüfer code of a labeled tree is the sequence of numbers generated by con-
tinually deleting the smallest leaf from the tree, and logging its parent.

For example, our tree is Extended Prüfer encoded as follows:

8

1

5

6 4

3

2 7 ⇒
smallest leaf 2 3 4 6 5 7 1

parent 1 4 5 5 1 1 8︸ ︷︷ ︸
|V |−1 columns

At first you may wonder how this is possibly better than our previous encoding. After
all, we still have just as many numbers, but now we’ve jumbled up the top row, so we
can’t even remove it anymore!
Indeed, that is why we call it the Extended Prüfer code. It turns out that we can not
only remove the entire top row, but also the rightmost number in the bottom row!

Note 8.16 (Well-Definedness).
We’ve previously shown that every tree has at least 1 leaf, and that the
graph that results from removing a leaf from a tree is still a tree.
These facts together allow this process to be well-defined.

Definition 8.17 (Prüfer Code).
The Prüfer code of a labeled tree is the first n − 2 numbers in the bottom row
of the Extended Prüfer code of the tree.

For example, the Prüfer code of our tree is:

8

1

5

6 4

3

2 7 ⇒ 1 4 5 5 1 1

78



Theorem 8.18 (Bijection between Prüfer Codes and Trees).
There is a bijective correspondence between Prüfer codes and labeled trees.

Proof. Consider the function

f : 〈set of labeled trees〉 → 〈set of Prüfer codes〉

defined by the following process:

1. From a labeled tree, construct its Extended Prüfer code. This is well-defined by
the argument in note 8.16.

2. Chop off the top row and last column of this Extended Prüfer code.

We claim that this function is a bijection. From here, the proof will proceed in three
parts. We will first introduce a function g, which we claim is the inverse. Then, we
will show that it is both a left and right inverse to f . This will allow us to conclude
that f is a bijection, which is what we wanted

1. Introducing the inverse function g

We present another process, which we will call g, where

g : 〈set of Prüfer codes〉 → 〈set of labeled trees〉

Define g as follows:

1. Build a table and fill the first n − 2 columns of the table with the given Prüfer
code. Fill the last column with n, where n = (# numbers in Prüfer code) + 2:

# · · · # n

2. Working left to right, fill the ? with the smallest number not in the shaded
regions:

?

# · · · # # # · · · # n

3. Construct the labeled tree by adding all the edges represented by the columns
in the Extended Prüfer code.

To call g a function, we have to show that it is well-defined. Consider an arbitrary
Prüfer code p1p2 · · · pk. We have to show that (1) we never get stuck when executing
g and (2) that the result of g is a valid labeled tree.

(1) The only real place we could get stuck is in step 2 of the process. Consider an
arbitrary execution of step 2:

?

# · · · # # # · · · # n︸ ︷︷ ︸
n−1 columns

The number that goes in the ? can be any of 1, 2, 3, · · · , n− 1. It will never be n,
since n can never be the smallest leaf. Thus, there are n− 1 options for ?.
However, there are at most n − 2 numbers in the shaded region, so we always
have a valid number to put in the ? spot.
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(2) We will show that |E| = n− 1 and acyclicity.

◦ (|E| = n− 1) Every column in the table corresponds to exactly one edge in
the tree. Since there are n− 1 columns, there must also be n− 1 edges.
◦ (Acyclic) By part (1), we know that g generates a complete table where ev-

ery cell has a number from 1 to n in it.
First, note that no number is repeated in the top row, since when adding
a new number to the top row, we disallow all previously added numbers
(because of the shaded box to the left of the ?). Since there are n−1 columns
in the table and only the numbers 1, · · · , n− 1 can be added to the top row
(n will never be the smallest leaf, and so will never be in the top row), we
know that the numbers 1, · · · , n− 1 each appear in the top row.
Now, BWOC, assume there exists a cycle, and mark the vertices of the cycle
with stars in the top row of finished table:

* * * *

We know that we can find at least one of the vertices in the cycle in the top
row since from above, the numbers 1, · · · , n−1 each appear in the top row.
Now consider the leftmost star (circled in the table):

– First, note it cannot appear in any of the gray regions by construction.
– If it appears in the red region, then there are two cases. First, if the

square above it is also in the cycle, then we contradict the fact that
* is the leftmost star in the table. If the square above it is not in the

cycle, then this edge doesn’t contribute to the cycle, and the rest of our
argument holds.

– Finally, since the numbers in the top row are all distinct, it cannot ap-
pear in the blue region.

Thus, * appears only once in the columns of the table representing edges
in the cycle. However, it was part of a cycle, so there must be at least two
edges involving that vertex, a contradiction. Thus, the output of g is acyclic.

Now, since the output of g has n− 1 edges and is acyclic, it is a tree.

Together, (1) and (2) combine to show that g is a well-defined function, which is the
result we wanted to show.

2. The function g is a left-inverse
We have to show that (g ◦ f) = id〈labeled trees〉. To do this, it suffices to show that if we
know a Prüfer code came from a valid labeled tree, g will recover the tree.
Assume we have a Prüfer code. First note that the last column is easy to fill in; it is
always the number of columns plus 2. It therefore suffices to show that we can recover
the top row.

# · · · # ?

# · · · # # # · · · # n

First note that since the top row contains every number from 1 to n− 1 exactly once,
the ? cannot be any of the previous numbers in the top row. In addition, since once
a number appears in the top row, we remove it from the tree. Therefore, it cannot ap-
pear in any cell in the table to its left. Finally, since self-loops are disallowed, it cannot
appear below the ?.
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Thus, all the numbers in the shaded region are ruled out:

?

# · · · # # # · · · # n

Let k be the smallest number not in the shaded region. To show our process is correct,
it suffices to show that k is the smallest leaf in the original tree.

◦ Certainly k hasn’t been removed from the tree, since it isn’t to the left of the ? in
the top row.

◦ AFSOC that k is not a leaf at this point. Then some other vertex has k as its
parent. However, we know this isn’t the case, since k is never listed in the bottom
row after this column by assumption.

Therefore, k is the smallest leaf, so we chose the right number to put there.

3. The function g is a right inverse
First note that every Extended Prüfer code determines a unique tree (it is just an edge
list), and that every tree determines a unique Extended Prüfer code by note 8.16.
But then, removing and then re-adding the other parts of the table certainly doesn’t
change the Prüfer code, so we get f ◦ g = id〈Prüfer Codes〉.

Now, as discussed before, we get that f is a bijection, which is what we wanted.

Note 8.19 (Take a Minute).
That was probably the most complicated proof we’ve seen in this class to
date; it certainly isn’t easy to follow the first time you see it. Take a minute
and make sure all of it makes sense before reading on.

With all that out of the way, at long last, we can provide a (blessedly short) proof of
Cayley’s Theorem:

Proof (Thm 8.10). By Theorem 8.18, the number of labeled trees on n vertices is equal
to the number of Prüfer codes with n− 2 numbers. But this is just nn−2.
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CHAPTER 9
The Traveling Salesman

Problem

What’s the complexity class of the best linear programming cutting-plane tech-
niques? I couldn’t find it anywhere. Man, the Garfield guy doesn’t have these
problems...

—Randall Munroe
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9.1 Big O Notation

Often in graph theory, we are interested in the asymptotic behavior of certain phe-
nomenon. That is, how certain properties of a graph change as the number of ver-
tices/edges/other things change.
To do this, it is helpful to understand big-oh notation. Unfortunately, it is a law in at
least 47 of the 50 states that we begin by giving the kinda hard to understand formal
definition:

Definition 9.1 (Big-Oh).
We say that a function f(n) is O(g(n)) (pronounced “oh of g”) if there exists a
constant c such that

|f(n)| ≤ cg(n)

for all sufficiently large n.

With that out of the way, we’ll pretty much never use the formal definition outside of
this section. Rather, we’ll focus more on an intuitive understanding of what it means.
The “definition” I like to work with is:

“We say f(n) is O(g(n)) if f grows at most as fast as g, when we ignore any
constants and lower order terms in the functions.”

It helps to see some examples:

Example 9.2 (Classifying Functions by Big-Oh).
Show the following:

◦ log n ∈ O(n)

◦ 0 ∈ O(n) and 0 ∈ O(1)

◦ n+ 1000 ∈ O(n)

◦ 3n2 + 10n− 400 ∈ O(n2)

It helps to see a plot when starting out:

Here we see that f(n) = n (in blue) grows
much faster than f(n) = log n (in red), so
intuitively we should have log n ∈ O(n).
To see this from the definition, note that
when c = 1:

|log n| ≤ n

for all n > 1.
It’s also worth noting that our choice of c
didn’t really matter here, even c = 1

5 (in
green) eventually surpasses log n.
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It’s fairly clear that 0 ∈ O(n)—it definitely grows slower than f(n) = n. To see that
0 ∈ O(1), note that

|0| ≤ c · 1

for pretty much any constant c (except c = 0).
In both of the above examples, our choice of constant hasn’t really mattered much.
Does it ever? Well, yes. Otherwise it wouldn’t be there. For an example of this, we’ll
prove n+ 1000 ∈ O(n). Using c = 2, we get

|n+ 1000| ≤ 2n

for all n ≥ 1000, so indeed n+1000 ∈ O(n). Note that if we used a c ≤ 1, we wouldn’t
have been able to prove this (why?).
Finally, to see an example of dropping lower order terms, consider 3n2 + 10n − 400.
Here, we use c = 4 to get: ∣∣3n2 + 10n− 400

∣∣ ≤ 4n2

since for large enough n, the n2 terms will far outweigh the n terms, so we only need
to beat 3n2. ,

Example 9.3 (Using Your Gut).
Which of the following big-oh classes is f(x) = 2n a part of?

O(1), O(log n), O(n), O(n2), O(nk), O(2n), O(3n), O(n!)

It’s fairly clear that 2n grows much faster than any polynomial, so the first 5:

O(1), O(log n), O(n), O(n2), O(nk)⇒ No.

are all out. Definitely 2n ∈ O(2n). In addition, 3n and n! both seem to grow faster
than 2n, so 2n ∈ O(3n) and 2n ∈ O(n!). ,

9.2 Hamiltonian Paths and Cycles

We’ll start with a definition:

Definition 9.4 (Hamiltonian Cycle).
A Hamiltonian cycle is a cycle which contains every vertex (once).

This is a Hamiltonian cycle. This is not.

We’re going to try and explore the broad question of: what conditions will force a
Hamiltonian cycle to exist in a graph?
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Example 9.5 (Lots of Edges).
Will lots of edges force a Hamiltonian cycle to exist?

Certainly if every edge is present, then a Hamiltonian cycle exists. Sadly, we can’t
do much better than this. A Kn−1 and an isolated vertex with 1 edge has a bunch of
edges, but no Hamiltonian cycle. For example:

has no Hamiltonian cycle. But in general, it has:(
n−1
2

)
+ 1(

n
2

) of the edges

As n→∞, we get that(
n−1
2

)
+ 1(

n
2

) =
(n−1)(n−2)

2 + 1
n(n−1)

2

=
1
2n

2 +O(n)
1
2n

2 +O(n)
≈ 1

so this isn’t really much better than just requiring every edge to be present. Sadly, it
seems that using edges to force a Hamiltonian cycle isn’t very useful. However, there
is another approach...

Note 9.6 (Abuse of Notation).
Note that we replaced a bunch of terms which collectively were O(n) by
just O(n). This makes absolutely no sense mathematically—O(n) is actu-
ally a set—but is so common we’ll do it here too.

Theorem 9.7 (Dirac’s Theorem).
Every graph with minimum degree ≥ n

2 has a Hamiltonian cycle (for n ≥ 3).

Before we prove this, let’s start with something easier: let’s try and find a cycle of
length ≥ n

2 + 1. To do this, consider the longest path in the graph:

The last point in this graph must have all of it’s neighbors in the graph, otherwise we
could add one to make a longer path.

vi v`

At least n/2 + 1 vertices here
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As the picture indicates, there are at least n
2 + 1 vertices in between (and including)

the leftmost neighbor of the last vertex and the last vertex itself. This is because the
last vertex in the path has at least n

2 neighbors all of which are in the path.
But then, we get that

vi v`

At least n/2 + 1 vertices here

is a cycle with n
2 + 1 vertices, which is what we wanted. We’ll end up using a similar

idea to prove the full version of Dirac’s Theorem.

Proof (Dirac’s Theorem). We’ll do the proof in three parts:

1. Prove that the graph is connected.

2. Prove that if there is a path with k vertices, then there is a cycle of length ≥ k.

3. Using (1) and (2), prove the full theorem.

We begin by showing the graph is connected. Assume towards a contradiction that
it isn’t. Then there are ≥ 2 connected components. But since the minimum degree is
≥ n

2 , each must have at least n
2 + 1 vertices. Thus, the graph has(n

2
+ 1
)
+
(n
2
+ 1
)
= n+ 2 vertices

which is a contradiction. Therefore, the graph is connected.
Now, assume we have a path with k vertices in it. From each edge, we’ll extend it as
far as we can—like we did in the warm up—until we get a maximal path, where each
end has all its neighbors in the path:

All neighbors in path

All neighbors in path

Now, let’s think about how we could end up with a k-vertex cycle. One way is if we
end up with a setup like the following:

Since this yields the cycle:
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and since there were at least k vertices in our path, then there must be at least k in
our new cycle. We now turn our attention to proving that—given the conditions we
have—this setup must exist in our graph.
Consider the edges coming from the leftmost vertex, and 7 out the vertices which,
if an edge from the rightmost vertex were to end there, would create a cycle with k
vertices:

7 7 7 7 7

Notice that each edge coming from the right edge creates exactly 1 7, and since every
vertex in our graph has degree ≥ n

2 , we will draw at least ≥ n
2 7’s.

Now, consider again the edges from the rightmost vertex. There are only n vertices
in the graph, so there are at most n − 1 options for where these edges can end. But
we’ve 7’ed out at least n

2 of them, so there are only

(n− 1)− n

2
<

n

2

of the vertices left. But we have ≥ n
2 edges, so one must hit an 7, and therefore we

must get our cycle!
We can now wrap up the proof. There’s definitely a path with 3 vertices in our graph:
just take any vertex and 2 of its neighbors (this is ok since n ≥ 3). Now we can use
the above to get a cycle of length 3. But our graph is connected, so some vertex in this
cycle connects to another vertex outside the cycle:

⇒

As in the picture above, we can just cut an edge to get a path with 4 vertices. Repeat
this process until we can’t, i.e.:

path with 4 vertices =⇒ cycle with 4 vertices =⇒ path with 5 vertices =⇒ · · ·

Eventually this chain of implications must end, since we only have a finite number of
vertices. When it does, we’ll have a cycle going through all n vertices: a Hamiltonian
cycle. This is what we wanted.

9.3 Eulerian Circuits

Definition 9.8 (Eulerian Circuit).
A Eulerian Circuit is a walk which contains every edge exactly once and which
ends at the starting vertex.

The idea of a Eulerian Circuit actually has historical roots. It—unsuprisingly—was
first discussed by Euler in the context of touring the Bridges of Königsberg, which
we’ll use as our motivating example for this topic:
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Example 9.9 (The Bridges of Königsberg).
Is it possible to tour all the bridges of Königsberg, passing over each exactly
once, and return to where you started?
The bridges are laid out as follows:

The idea is to represent this as a multigraph, which is just a graph in which we allow
there to be multiple edges. We’ll represent each “chunk” of land as a vertex, and each
of the bridges as an edge. Doing this yields the graph:

Briefly convince yourself that finding a Eulerian circuit in this graph exactly models
the original problem.
One observation from here is that as you pass each vertex, you must go “in” then im-
mediately ”out” of the vertex. Thus, each pass through a vertex decreases the degree
by two, and since at the end we must have used all the edges up, the degree of every
vertex must be even.
There’s a potential catch in the vertex we start with, since starting there doesn’t relate
to “passing through” it, but it turns out that our argument is still fine, since we have
to start and end in the same place. Therefore, the first out is matched by the last in
and so we’re good. Summarizing, we get:

Eulerian circuit =⇒ all degrees are even

Can we go the other way? Sadly, no. Consider:

There’s no way to even get from one part of the graph here to the other, nonetheless
find a Eulerian cycle. However, your intuition might tell you that we kind of “cheated”
by making the graph disconnected. What if we also require connectivity? Is that
enough? Amazingly, it actually is! Let’s prove it.
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Theorem 9.10 (Necessary and Sufficient Conditions for a Eulerian Circuit).
A multigraph G contains a Eulerian circuit if and only if all of its degrees are
even and it is connected.a

aTechnically, degree 0 vertices are allowed, but are uninteresting.

Proof. We’ve actually already argued the forwards direction. For the backwards di-
rection, we’ll present an algorithm for finding a Eulerian circuit in a connected graph
with all degrees even:

G = (V,E) is a graph
FIND-EULER-CIRCUIT(G):
1 Discard all vertices of degree 0.
2 Start at any vertex and walk until you can’t.
3 If not done, find an unused edge connected to our current

circuit and recurse. Then, join the two resulting circuits.

Actually, this is almost a complete proof; we only have some small details to iron out:

◦ In step 2, we actually start and end at the same vertex. This is because we must
end at a vertex with an odd degree “remaining,” but the process of walking
around the graph combined with the all degrees even condition only leaves even
degree vertices. Thus, the only option for an endpoint is the original vertex.

◦ In step 3, while we aren’t done, we can always find an edge connected to the
current circuit because the graph is connected.

◦ Finally, to clarify what we mean by “join the resulting circuits,” here’s an exam-
ple of what that looks like:

+ =

With all that, we’re done.

Note 9.11 (Multigraphs).
Note that never did we actually need that there is a unique edge connect-
ing two vertices, so this proof is totally valid for multigraphs as well.
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9.4 Minimum Spanning Trees

Definition 9.12 (Spanning Tree).
A spanning tree of a graph is a subtree of the graph which contains every vertex.

For example (using the graph from our proof of the Eulerian circuit conditions), we
can find the following spanning tree:

⇒

Proposition 9.13 (Existence of Spanning Trees).
Every connected graph has a spanning tree.

Proof. We’ll present a surprisingly simple algorithm:

G = (V,E) is a graph
FIND-MST(G):
1 While there is a cycle, remove an edge from it.

Certainly each step of this algorithm doesn’t hurt connectivity, since we’re removing
an edge from a cycle. Any path that would have used that edge can go the long way
around with the other edges in the cycle.
However, at the end, we end up with an acyclic graph. Thus, the resulting graph is a
connected acyclic graph; i.e. a tree.

This problem on its own isn’t particularly interesting. But what if we add weights
(to keep it simple, in R+) to each of the edges? That is, what if we make some more
“expensive” to add to our tree?
Is there a good way to find the cheapest spanning tree in this new system?

Note 9.14 (Interpreting Weights).
In applications, these weights are typically thought of as distances (such as
in road networks) or as costs/expenses (such as the amount of fuel needed
for a flight path).
This whole section is exceptionally useful in the real world.
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Definition 9.15 (Minimum Spanning Tree).
The minimum spanning tree (or MST) of a graph is the spanning tree which
minimizes the sum of the weights of the edges.

For example, here is a weighted graph and its MST:

3

24

1

5 ⇒

1 3

24

5

Note 9.16 (MST’s in Kn).
Sometimes the task of finding an MST is presented in the context of the
complete graph, since often in the real world we are allowed to travel be-
tween any two points we wish, but perhaps at great cost.
These two presentations are equivalent actually. Just replace missing
edges by edges of weight∞ to get a complete graph if necessary.

We’ll now examine some algorithms for finding MST’s.

Prim’s Algorithm

The algorithm is as follows:

G = (V,E, c) is a graph with a cost function c : E → R+

PRIM-MST(G):
1 Start at any vertex v. It is your “starting” connected component.
2 Keep adding the smallest edge extending from your current

connected component to a new vertex.
3 Stop after we’ve added n− 1 edges.

Here’s how Prim’s algorithm would find the MST from the above graph:

3

24

1

5 ⇒

3

24

1

5 ⇒

3

24

1

5

⇒

3

24

1

5 ⇒ done X
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Proof. We’re actually mimicking the tree growing procedure, so we’re definitely go-
ing to end up with a tree at the end.
To show that we get the minimum spanning tree, we’ll show that at each point in the
algorithm, we are on a “right track.” That is, no matter what we’ve built so far, there
exists an MST which contains what we have. This better be true, since Prim’s algo-
rithm never backtracks. To do this, we’ll use induction:

bc Any MST contains every vertex, so whatever vertex we choose to start at must
be in an MST.

is Assume that the current tree we have can be extended to an MST. Our setup will
look something like the following:

e

Have Remaining

Where the IH guarantees there exists an MST containing the “have,” and the
algorithm chose to add e at this stage.
Assume towards a contradiction that no MST contains this edge. Now, consider
the MST guaranteed by the induction hypothesis:

e′

No e

Note that this MST does not contain e, but contains some other edge e′ which
crosses from our “have” to our “remaining.” By the assumption of Prim’s algo-
rithm, we have

cost(e) ≤ cost(e′)

But then, removing e′ and adding e also makes a tree, and from that inequality,
it must have ≤ cost, so it is also a minimum spanning tree. But then, some MST
contains e, a contradiction.

By induction, Prim’s algorithm will terminate with an MST.

Note 9.17 (MST Cut Property).
In doing this proof, we ended up proving something called the MST cut
property. This states that:

Between any set S ⊆ V and V \S, the least cost edge is in a
minimum spanning tree.

Take a second and make sure you see how this fact can be derived with
almost identical logic to that found in the proof above.
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Kruskal’s Algorithm

The algorithm is as follows:

G = (V,E, c) is a graph with a cost function c : E → R+

KRUSKAL-MST(G):
1 Keep adding the lowest cost edge (of any edge in the graph)

which doesn’t create a cycle.
2 Stop after we’ve added n− 1 edges.

Here’s how Kruskal’s algorithm would find the MST from the above graph:

3

24

1

5 ⇒

3

24

1

5 ⇒

3

24

1

5

⇒

3

24

1

5 ⇒ done X

Proof. Again, it’s fairly clear that this actually builds a tree. We’ll use the same induc-
tion approach to show that this yields an MST:

bc We start with no edges, and since ∅ ⊆ anything, the claim holds.

is Assume that the current edges we have can be extended to an MST. Our setup
will look something like the following:

e

Where the IH guarantees there exists an MST containing these edges and the
algorithm chose to add e at this stage.
Assume towards a contradiction that no MST contains e, and consider the MST
guaranteed by the IH. Add the edge e to this MST:

e

e′

Doing so must necessarily create a cycle (in bold). But then, there must exist an
edge e′ with cost(e) ≤ cost(e′) in the cycle, otherwise we wouldn’t have added
e at this point in the algorithm.
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This is because the graph ends up connected, so there must be some edge[1]

which connects the two connected components connected by e which wasn’t in
our graph at this stage in the algorithm. None of these would have created a
cycle, so they must have ≥ cost since our algorithm didn’t choose them.
But then, removing e′ and adding e gives a spanning tree with ≤ cost, hence
there is an MST with e after all, a contradiction.

By induction, Kruskal’s algorithm will terminate with an MST.

9.5 The Traveling Salesman Problem

Definition 9.18 (The Traveling Salesman Problem, Metric TSP).
The traveling salesman problem (or TSP), is the problem of finding a route
through every vertex in a graph which returns to the starting point and has
the minimum possible cost.
The metric TSP problem is a variant where we are restricted to Kn, and the
distances between vertices satisfy the triangle inequality:

c(v1, v2) + c(v2, v3) ≤ c(v1, v3)

Here, our goal is to find a minimum cost Hamiltonian cycle.

Note 9.19 (A Million Dollar Question).
This is literally a million dollar question. If you find an “efficient” algo-
rithm to solve this, the Clay Institute will literally give you $1,000,000. See

http://www.claymath.org/millennium-problems/p-vs-np-problem

As you may expect from this, there is known solution.

Note 9.20 (Metric TSP).
The conditions of the metric variant of the TSP may be hard to wrap your
head around at first. They are designed to exactly model the application
where the vertices are cities and the costs are the distances between the
cities. It is often useful to think of it in terms of this.

Just because getting an exact solution to this problem is hard doesn’t mean we will
give up though. Instead, we’ll show how to find an approximate solution. First we
give a definition:

Definition 9.21 (Factor-n-Approximation Algorithm).
An algorithm is a factor-n-approximation to a problem if the cost of it’s output
is always within a factor of n to the optimal output.

[1] Or series of edges, at least one of which isn’t in the current graph.
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Theorem 9.22 (Metric TSP Approximation).
There is a factor-2-approximation algorithm to the metric TSP problem.

Proof. The algorithm is as follows:

G = (V,E, c) is a complete graph with cost function c that obeys
the triangle inequality
METRIC-TSP-APPROX(G):
1 Using Prim’s or Kruskal’s algorithm, find a minimum

spanning tree.
2 Walk around the tree, taking every edge twice.
3 If we would have to return to a previously visited vertex, jump

directly to the next one on our path.

For visual clarity, we won’t draw all the edges in our Kn, and assume the cost of an
edge is the Euclidean distance between them. The proof, however, works for arbitrary
metric spaces.[2]

For an example, consider the following complete graph, with the following MST:

We’d first walk around the tree as follows (we’ll assume we start at the rightmost
vertex, in red):

But notice this is not a Hamiltonian cycle, since we visit some vertices multiple times.
We fix this with step (3), jumping immediately to the next vertex:

From this example, it’s not hard to see that the algorithm actually will generate a
Hamiltonian cycle. Therefore, we turn to showing that it is a factor-2-approximation.

[2] Formally, a metric space is a pair (M,d) where M is a set of points, and d : M ×M → R+ is a metric
which is: (1) symmetric; (2) positive definite; and (3) obeys the triangle inequality.
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First, consider the cost of the walk generated by step (2), before doing step (3). This
walk has cost:

cost(walk) = 2× cost(MST)

since we take every edge in the MST exactly twice. But note that we can’t possibly hope
to do better than the MST, since finding a TSP tour requires connecting the graph and
the MST is the cheapest way to connect the graph. Thus cost(MST) ≤ cost(OPT),
which gives us that

cost(walk) = 2× cost(MST) ≤ 2× cost(OPT)

and so the walk from step (2) is already a factor-2-approximation. However, we still
have to show that step (3) doesn’t screw this up. Luckily, this is easy: the triangle
inequality guarantees that jumping straight to the next vertex is better than taking
two or more edges to get there, so (3) actually will reduce the cost, if anything.
Thus, we’ve found a factor-2-approximation to the metric TSP problem.
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CHAPTER 10
Ramsey Theory

Imagine an alien force, vastly more powerful than us, landing on Earth and de-
manding the value of R(5, 5) or they will destroy our planet. In that case, we
should marshal all our computers and our mathematicians and attempt to find
the value. Suppose, instead, that they ask for R(6, 6). In that case, we should
attempt to destroy the aliens.

—Paul Erdős
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10.0 Probability Primer

In general, probability is an extremely difficult concept to define rigorously; however,
this task becomes much easier when in a discrete setting. And luckily for us, this is a
discrete math course. So let’s do it!

Definition 10.1 (Probability Space, Event).
A probability space is a pair (Ω,Pr), where

◦ Ω is a seta called the sample space of all possible outcomes of some process

◦ Pr : P(Ω) → [0, 1] is a probability measure, which indicates how likely
an outcome in the sample space is.

In addition, we require common sense checks, such as:

◦ Pr[Ω] = 1; that is, something always happens.

◦ If A,B disjoint, then Pr[A ∪B] = Pr[A] + Pr[B]. This actually extends to
countable unions as well, but we won’t use this fact much.

Intuitively, a probability is just an assignment of how likely any subset of a
larger set of outcomes is to happen.

a which for our purposes, we’ll restrict to be countable

Note 10.2 (Probably can ignore all that...).
The above is a balance between a very rigorous definition and a common
sense definition. But honestly, if you just run with your intuition about
what probability is, you’ll be able to to everything in this chapter just fine.

Definition 10.3 (Event).
We call a subset of Ω an event. Intuitively, an event is just a collection of things
that can happen.

For our purposes, we’ll mainly be focusing on coming up with clever way to upper
bound probabilities of things happening. The first bound we’ll look at is straightfor-
ward, but powerful:

Proposition 10.4 (Union Bound).
Let A1, A2, · · · , An, · · · be a countable collections of events (subsets of Ω). Then

Pr[A1 ∪A2 ∪ · · · ∪An ∪ · · · ] ≤ Pr[A1] + Pr[A2] + · · ·+ Pr[An] + · · ·

Notice that we don’t require the Ai to be disjoint.

Proof. The idea is to use the inclusion exclusion principle to get it for two events, then
use induction to extend it to n. It’s a good exercise if you’ve got time.
It’s a bit more of a pain for the countably infinite case. We won’t do it here.
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Definition 10.5 (Random Variable).
A random variable is a function X : Ω→ R. Intuitively, a random variable is a
way to assign real number to outcomes in the sample space.
Note, it is extremely common to use capital letters towards the end of the al-
phabet X,Y, Z to denote random variables.

Example 10.6 (Flipping Coins).
If we flip 5 fair coins, what’s the probability we get more than 3 heads?

First, let’s say Ω is the set of all possible sequences of 5 coin flips, eg.

Ω = {HHHHH,HTHHT, · · · }

Then a random variable might be number of heads flipped. We’re often interested in
the probability that a random variable takes on a given value.
For example, if we let X be a random variable denoting the number of heads flipped,
we may be interested in Pr[X > 3]. Well, what is this probability (assuming a fair
coin)? For this to happen, one of two things must happen:

1. We flip 4 heads. There are 5 ways to to this, since once we pick the location of
the tail, the heads are fixed.

{HHHHT,HHHTH,HHTHH,HTHHH,THHHH}

To get any one of these sequences, we must hit five 50/50’s in a row, so our
probability is 5 ·

(
1
2

)5
= 5

32 .

2. We flip 5 heads. There’s only 1 way to do this, and again, we must hit five 50/50’s
in a row. Thus, our probability of this is

(
1
2

)5
= 1

32 .

But only one of those two things can happen, so we can add the probabilities to get
Pr[X > 3] = 5

32 + 1
32 ≈ 0.1875, so this happens about 18% of the time. ,

This idea of finding the probability of some number of “successes” in n “tries” comes
up enough that we’ll give it a special name:

Definition 10.7 (Binomial Random Variable).
A binomial random variable models the number of “successes” in n “tries,”
where a success happens with probability p.
When a random variable X is binomial, we say X ∼ Binomial(n, p).

Note 10.8 (Bernoulli Random Variables).
Sometimes when n = 1, we call a binomial random variable a Bernoulli
random variable.
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Proposition 10.9 (Probability of a Binomial Random Variable).
When X ∼ Binomial(n, p), we have

Pr[X = x] =

(
n

x

)
px(1− p)n−x

Proof. This uses a similar argument to the coin flipping example. We choose the
position of the x successes in

(
n
x

)
ways. Each of these sequences has probability

px(1− p)n−x of happening. Thus, we get

Pr[X = x] = px(1− p)n−x + · · ·+ px(1− p)n−x︸ ︷︷ ︸(n
x

)
times

=

(
n

x

)
px(1− p)n−x

which is what we wanted.

Definition 10.10 (Expected Value).
The expected value of a random variable is just a weighted average. Mathemat-
ically, we say that

E[X] =
∑
x

x · Pr[X = x]

In addition, we extend the expected value to allow expected values of functions
of random variables:

E[f(X)] =
∑
x

f(x) · Pr[X = x]

With this, we introduce maybe the most important theorem in probability theory:

Theorem 10.11 (Linearity of Expectation).
For any random variables X,Y and constants a, b, then

E[aX + bY ] = a · E[X] + b · E[Y ]

This extends to arbitrarily large sums by induction.

Example 10.12 (Using Linearity).
What is the average total when rolling two dice?

Let X1 denote the number rolled on the first die, and X2 the number on the second.
We are interested in

E[X1 +X2] = E[X1] + E[X2] (by linearity of expectation)

The dice are the same, so E[X1] = E[X2]. Then

E[X1] =
6∑

x=1

x · Pr[x] = 1 · 1
6
+ 2 · 1

6
+ 3 · 1

6
+ 4 · 1

6
+ 5 · 1

6
+ 6 · 1

6
= 3.5

so our expected total is E[X1] + E[X2] = 3.5 + 3.5 = 7. ,

100



Definition 10.13 (Variance).
The variance of a random variable X is a measure of how spread out it is, and
is given by

Var[X] = E
[
(X − E[X])2

]
i.e. take the average of the squared distance from the mean.

Theorem 10.14 (Easier Variance).
For any random variable X , we also have that

Var[X] = E[X2]− E[X]2

Proof. This is largely an exercise in algebra and applying previous theorems:

Var[X] = E
[
(X − E[X])2

]
= E

[
X2 − 2XE[X] + E[X]2

]
= E[X2]− 2E[X] · E[X] + E[X]2 by linearity
= E[X2]− E[X]2

which is what we wanted to show.

Proposition 10.15 (Back to Binomials).
If X ∼ Binomial(n, p), then E[X] = np and Var[X] = np(1− p).

We’ll conclude this section by coming back to our goal of bounding probabilities of
things, and introduce two more useful inequalities:

Theorem 10.16 (Markov’s Inequality).
LetX be a non-negative random variable (most random variables we care about
in this class are). Then, for any c > 0:

Pr [X ≥ c] ≤ E[X]

c

Theorem 10.17 (Chebyshev’s Inequality).
Let X be a non-negative random variable with variance Var[X] = σ2. Then, for
any c > 0:

Pr
[
|X − E[X]| ≥ kσ

]
≤ 1

k2

Note 10.18 (Using all of this).
Do note that you probably won’t end up needing all of these facts to get
through the remaining sections. However, these are all useful ideas. Find
one or two tricks that work well for you, and stick to those.
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10.1 Ramsey Numbers

Once upon a time, a Hungarian sociologist made a remarkable observation about be-
havior of elementary school students in classrooms. It seemed that in classes of about
20 students, he could always find either:

◦ 4 kids, all of whom were friends with one another; or

◦ 4 kids, all of whom were not friends with one another.

But fortunately, the sociologist was Hungarian, and thus good at graph theory.[1] Af-
ter some work, he realized that this phenomenon was hardly unique to humans, it
was actually just a graph theoretic fact!

Definition 10.19 (Independent Set).
An independent set of size n, denoted Kn, is a collection of n vertices, where
there are no edges between any two of the vertices.

With this definition, we can state the sociologist’s claim in graph theoretic language:

Every graph on 20 vertices contains a K4 or a K4.

In fact, if you check Wikipedia, you’ll find that we actually can pull this off with just
18 vertices—this somehow feels better. It feels more impressive to pull this off with
less vertices. Let’s generalize this idea:

Definition 10.20 (Ramsey Number).
The tth Ramsey number, denoted R(t, t) is the minimum number n such that
every n vertex graph has a Kt or a Kt.
Alternatively, R(t, t) is the smallest number n such that coloring the edges of
Kn one of two colors yields a monochromatic Kt.

Why are these two definitions the same? Just consider the absence of an edge to be a
different color:

⇐⇒

Note 10.21 (Choosing Colors).
When coloring graphs with two colors, we typically use red and blue to
avoid colorblindness issues. We’ll stick with this here.

[1] It’s a well-known fact that basically every Hungarian is good at discrete math for some reason...
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Proposition 10.22 (Value of R(3, 3)).
The third Ramsey number is R(3, 3) = 6.

Proof. First, we’ll exhibit a graph on 5 vertices which has no monochromatic K3:

Notice that any three vertices we pick have 2 edges of one color, and 1 of the other.
Thus, we know that R(3, 3) > 5.
Now, consider K6, and fix an arbitrary 2-edge-coloring of it. Consider an arbitrary
vertex v. Since it connects to 5 other vertices, at least 3 red edges or at least 3 blue
edges. WLOG, assume it has 3 blue edges. Now, consider the vertices which are
connected to v by these 3 blue edges. There are 2 cases:

◦ If any of the edges between these
vertices are blue, then we’re done.

v

◦ If all of the edges are red, then we
can use those three as our K3!

v

In either case, we’ve found a monochromatic K3, so we’re done.

Note 10.23 (Proving the value of a Ramsey number).
To show that R(t, t) = n, we have to do two things:

◦ Show that there is an n−1 vertex graph which can be 2-edge-colored
so that it has no monochromatic Kt. This establishes R(t, t) > n− 1.

◦ Show that any 2-edge-coloring of an n vertex graph has a monochro-
matic Kt. This establishes R(t, t) ≤ n.

Together, these facts give R(t, t) = n.

From here, you might be tempted to start proving the value of all kinds of Ramsey
numbers. Some clever argument might be able to get you that R(4, 4) = 18, but at
R(5, 5), you’ll probably get stuck.
It turns out you wouldn’t be alone in that. No one knows the value of R(5, 5). In fact,
if you can find it, you’ll get an immediate A in this class (and probably a PhD).
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10.2 Random Graphs and the Probabilistic Method

Going forward, we’ll need to apply probabilistic ideas from the beginning of this
chapter to graphs. To do this, we need a way to talk about random graphs:

Definition 10.24 (The Erdős-Réyni Model).
The Erdős-Réyni random graph model, denoted G(n, p), constructs a random
graph as follows:

◦ Construct an independent set with n vertices.

◦ For every pair of vertices, add an edge with probability p.

In fact, this definition is about all we’ll need. However, let’s do some examples to
make sure you’re comfortable with using it:

Example 10.25 (Isolated Vertex in G(n, 1/2)).
Show that as n→∞, a graph generated with the G(n, 1/2) model almost surely
will have no vertices of degree zero.

Let n be arbitrary and let An denote the event that this happens in a graph with n
vertices (i.e. that the graph contains a vertex of degree 0).
Let Ei denote the event that vertex i in the graph is isolated after the procedure. Now,
note that An =

⋃n
i=1 Bi. We’ll use the union bound:

Pr[An] = Pr

[
n⋃

i=1

Bi

]
≤

n∑
i=1

Pr[Bi] = n · Pr[B1]

where the last equality holds since by symmetryPr[Bi] = Pr[Bj ] for any i, j. However,
B1 happens iff the edges to vertices 2, 3, · · · , n are all missing. This happens with
probability (1/2)n−1. Thus,

Pr[An] ≤ n ·
(
1

2

)n−1

=⇒ lim
n→∞

Pr[An] = 0

which is what we wanted to show. ,

Example 10.26 (Triangles in G(n, p)).
What is the expected number of triangles in a G(n, p) graph?

Let T be a random variable denoting the number of triangles in the graph. Index all
3-sets of vertices 1, 2, · · · ,

(
n
3

)
, and define random variables

Ti =

{
1 if the 3-set i has all edges present (i.e. is a triangle)
0 if there’s an edge missing

Then T = T1 + T2 + · · ·+ T(n
3

). Now, using linearity of expectation, we get

E[T ] = E[T1] + E[T2] + · · ·+ E[T(n
3

)] =
(
n

3

)
· E[T1]

since by symmetry E[T1] = E[Ti] for any i.
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Now, to find E[T1]. We have that

E[T1] = 1 · Pr[T1 = 1] + 0 · Pr[T1 = 0] = Pr[T1 = 1]

= Pr[the 3-set 1 is a triangle]

In order for this to be the case, we must have chosen each of the 3 edges when gener-
ating the graph. This happens with probability p · p · p = p3. Thus, E[T1] = p3, and so
we get

E[T ] =

(
n

3

)
· p3

,

Important 10.27 (The Probabilistic Method).
The probabilistic method is a technique pioneered by Erdős for proving
the existence of something. It proceeds as follows:

◦ Generate a candidate object randomly.

◦ Prove that your random procedure generates the class of object you
want with non-zero probability.

Then, since we can make such an object with non-zero probability, one
must exist. Neat!

Example 10.28 (Round-Robin Tournaments).
Let n teams play each other in a round-robin tournament, where each plays
every other team. Prove that if(

n

k

)
(1− 2−k)n−k < 1

then we can choose the outcomes of the
(
n
2

)
matches such that for every set of

k teams, some other team beat every team in the set.

This seems like a nearly impossible problem... how on earth do you even begin to
tackle such a question? Luckily, it becomes easy when we use the probabilistic method!
Let’s just choose the outcomes of each match randomly. For every subsetK of k teams,
let AK be the event that none of the teams in the set beat all the others. We want to
show that:

Pr

[ ⋃
K⊆[n]
|K|=k

AK

]
< 1

i.e. The AK ’s are bad, and there is a chance that all of them don’t happen. First, let’s
try and find Pr[AK ].

◦ For some team not in our set K, they will beat each of the teams in our set with
probability:

1

2
× 1

2
× · · · × 1

2︸ ︷︷ ︸
k times

= 2−k

so the probability that we fail to have that team beat every team in K is 1− 2−k.

◦ There are n − k other teams to try with, so we multiply to get the probability
that we fail each time is (1− 2k)n−k.
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Therefore, we get that
Pr[AK ] = (1− 2−k)n−k

Now, we take a union bound:

Pr

[ ⋃
K⊆[n]
|K|=k

AK

]
≤
∑

K⊆[n]
|K|=k

Pr[AK ] =

(
n

k

)
(1− 2−k)n−k < 1

and so with positive probability, none of the events AK occurs; i.e. there is a tourna-
ment such that for each set K, a team beats every team in the set. ,

Note 10.29 (Non-Constructive Proofs).
Notice that in our proof above, we never actually managed to construct
a graph that had the desired property. The power of the probabilistic
method is precisely that we don’t have to do this.

10.3 Finding Bounds on Ramsey Numbers

Our ultimate goal for this section will be to find bounds on the valueR(t, t). However,
to do this, we need to introduce a more general definition:

Definition 10.30 (Generalized Ramsey Number).
R(s, t) is the minimum n such that every 2-edge-coloring of Kn has a red Ks or
a blue Kt (again, we use red and blue WLOG).

Note 10.31 (Sanity Checks).
Take a minute to convince yourself that the following things are true:

◦ R(s, t) = R(t, s)

◦ R(1, t) = 1

◦ R(2, t) = t

For example, we’ll give a brief justification of the last one, that R(2, t) = t:

◦ t vertices is enough.
If any edges are red, then we’ve found a red K2 and we’re done. Otherwise, all
edges are blue, and thus we get a blue Kt.

◦ Can’t do it with t− 1.
Just build a blue Kt−1.

Therefore, we get that R(2, t) = t, which is what we wanted. ,
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Theorem 10.32 (Ramsey Number Upper Bound).
For all s, t ∈ Z+, we have that

R(s, t) ≤
(
s+ t− 2

s− 1

)

Proof. We’ll begin by showing that

R(s, t) ≤ R(s− 1, t) +R(s, t− 1)

To do this, fix an arbitrary 2-edge coloring of Kn. Pick any vertex v, and split up the
rest of the graph by the color of v’s edges:

v

Now, consider the top half. If there’s a red Ks−1, then we can add v to get a red Ks.
Also, if there’s a blue Kt, then we’re done as well. Thus, the upper half can have at
most R(s−1, t)−1 vertices. Similarly, the bottom half can have at most R(s, t−1)−1
vertices. Therefore, the entire graph has at most(

R(s− 1, t)− 1
)
+
(
R(s, t− 1)− 1

)
+ 1 vertices

so any n greater than R(s− 1, t) +R(s, t− 1)− 1 works; i.e.

R(s, t) ≤ R(s− 1, t) +R(s, t− 1)

Now, we can prove the main claim by joint induction on s and t:

bc Our base cases are when one of s or t is 1:

R(1, t) = 1 ≤
(
1 + t− 2

1− 1

)
and R(s, 1) = 1 =

(
s+ 1− 2

s− 1

)
so we’re good.

is We’ll show that the bound for R(s − 1, t) and R(s, t − 1) implies it for R(s, t).
From above, we get:

R(s, t) ≤ R(s− 1, t) +R(s, t− 1) from the above

≤
(
(s− 1) + t− 2

(s− 1)− 1

)
+

(
s+ (t− 1)− 2

s− 1

)
by the IH

=

(
s+ t− 3

s− 2

)
+

(
s+ t− 3

s− 1

)
=

(
s+ t− 2

s− 1

)
by Pacal’s Identity

which is what we wanted.

Therefore, the claim holds for any s and t by joint induction.

107



Corollary 10.33 (Exponential Bound on R(t, t)).
For any t ∈ Z+, we have R(t, t) ≤ 4t.

Proof.

R(t, t) ≤
(
2t− 2

t− 1

)
≤
(

2t

t− 1

)
≤ 22t = 4t

Proposition 10.34 (Quadratic Lower Bound for R(t, t)).
For any t ∈ Z+, we have R(t, t) > (t− 1)2.

Proof. We just have to show a graph such that there are no monochromatic Kt’s. The
following works:

Where here the graph is drawn for R(5, 5). Each smaller K4 is blue, and the rest of
the graph is connected by red edges.
This process generalizes as follows. Begin by making t−1 disjoint, blue Kt−1’s. Then,
fill all the missing edges as red.

◦ There’s definitely no blue Kt, since each blue component has only t−1 vertices,
and there’s no blue edges between the Kt−1’s.

◦ There’s also no red Kt, since we can’t pick two vertices in the same Kt−1, other-
wise we get a blue edge. However, there’s only t− 1Kt−1’s, so we’re good.

Therefore, we get that R(t, t) > (t− 1)2.

Note 10.35 (Not so great sadly...).
Unfortunately, this is only a polynomial bound. We would ideally like an
exponential lower bound to match the exponential upper bound we got
earlier.
For a long while, this was the best we could do. However, eventually Erdős
managed to get an exponential lower bound...
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Theorem 10.36 (Erdős’s Lower Bound).
There is a coloring of the edges of Kn where n = 2t/2 with no monochromatic
Kt; i.e. R(t, t) > 2t/2.

Proof. We’ll use the probabilistic method. For each of the
(
n
t

)
sets of t vertices, define

the event
ES = event that all edges in S are the same color

Now, randomly color the edges of our graph. We can take a union bound to get:

Pr[random process fails] = Pr[some ES happens]
≤ Pr[BS1

] + · · ·+ Pr[BS(
n
t

) ]

but Pr[BSi
] = 2×

(
1
2

)(t
2

)
, since we have to pick the color (2 ways), then hit

(
t
2

)
50/50’s

to get them all to be that color. Thus

= 2×
(
1

2

)(t
2

)
+ · · ·+ 2×

(
1

2

)(t
2

)
︸ ︷︷ ︸(n

t

)
times

=

(
n

t

)
× 2×

(
1

2

)(t
2

)
=

(
n

t

)
× 2×

(
1

2

) t2+t
2

=

(
2t/2

t

)
× 2

2
t2+t

2

<

t times︷ ︸︸ ︷
2t/2 × · · · × 2t/2

t!
× 2

2
t2+t

2

=
2t

2/2

t!
× 2

2t2/2−t/2
=

1

t!
× 2

2−t/2
=

2t/2+1

t!

< 1

since t! grows much faster than 2t/2+1. Thus, the probability of our process failing to
generate a valid graph is less than 1, so such a graph must exist.

Note 10.37 (Summarizing our bounds).
For any t ∈ Z+, we have that

√
2
t
< R(t, t) ≤ 4t
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CHAPTER 11
Colorability and Planarity

If you prove something about 3-coloring graphs, you want to prove there isn’t an
easy way to check it. If you somehow find efficient conditions to check, then some
big governmnet guys will show up one day and you’ll just disappear.

—Po-Shen Loh
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11.1 Colorability

You may have noticed that when you look at maps in geography books, they are col-
ored with just 4 colors. For example

Somehow, even for complicated maps, it seems that 4-colors are all that is necessary
to color each state/country/etc. such that adjacent ones don’t use the same color.[1]

Let’s introduce some graph theoretic terminology related to this.

Definition 11.1 (k-Colorable, Chromatic Number).
A graph is k-colorable if you can assign one of k colors to each vertex such that
no adjacent vertices have the same color.
The chromatic number of a graph, denoted χ(G), is the smallest k such that the
graph is k-colorable.

When building and coloring a graph, it is often useful to think of the edges as conflicts,
such as shared boarders in a map, or overlapping time slots, or something similar.

Note 11.2 (1-colorable?).
What does it mean for a graph to be 1-colorable? Well, if we have any
edge, we can’t pick colors for its endpoints so that they’re different, so
1-colorable means there are no edges.

Note 11.3 (Increasing k).
If a graph is, say, 4-colorable, then it is also 5-colorable, 6-colorable, etc.
That is, coloring a graph is easier with more colors.

We’ve managed to classify 1-colorable graphs. How about 2-colorable ones? For that,
we need a definition:

[1] More formally, we have that every “planar” graph is 4-colorable. Intuitively, that’s just every graph
that represents a map. We’ll define planarity in the next section.
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Definition 11.4 (Bipartite Graph).
A graph G = (V,E) is said to be bipartite if there is a partition of V = X t Y
such that every edge in E has one endpoint in X and the other in Y .
We will often write G = (X,Y,E) to emphasize the partition.

Here are some examples of bipartite graphs:

Bipartite graphs are often drawn like this Any tree is also a bipartite graph

Theorem 11.5 (Classifying 2-colorable graphs).
The following are equivalent:

(1) G is 2-colorable

(2) G is bipartite

(3) G contains no odd cycles

Proof. We’ll show that (1) ⇐⇒ (2) and (1) ⇐⇒ (3).

◦ [(1) ⇒ (2)] If a graph is 2-colorable, then it has a 2-coloring. Put all the red
vertices in a set X , and all the blue ones in a set Y . Then XtY is our bipartition.

◦ [(2) ⇒ (1)] If a graph is bipartite, then color all the vertices in X blue and the
ones in Y red. This is a 2-coloring.

◦ [(1)⇒ (3)] We’ll show the contrapositive. If an odd cycle exists, it looks like:

??

But then, either color we choose for the last vertex violates our 2-coloring. Hence,
the graph is not 2-colorable.
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◦ [(3)⇒ (1)] We’ll present an algorithm to 2-color the graph:

Breadth-First-Coloring(G)
1 Start at any vertex, give it a color (say blue).
2 Color each adjacent vertex red.
3 Color each each vertex adjacent to those red vertices blue;

repeat 2 and 3
4 Repeat for each connected component.

Here’s an example of a breadth first coloring:

1 2

3 4

Note that if we color the graph in a breadth first manor, we never will have:

← None of these edges

Since then we wouldn’t have actually explored the graph in this order. That is,
the vertex at the end of the dotted line should be in an earlier layer.
So what could break our 2-colorability? Any edge between two vertices on the
same level. But then, there must be a cycle of length

2× (distance from common ancestor) + 1

which is an odd cycle, a contradiction.

Note 11.6 (3-colorable?).
Can we classify all the 3-colorable graphs? Well, probably not. This is
another one of those million dollar, NP-complete questions.
If you somehow manage to find easy to check conditions for when a graph
is 3-colorable, then go claim your prize!
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Theorem 11.7 (Bound on the Chromatic Number).
Every graph with maximum degree ∆ is (∆ + 1)-colorable.

Proof. Fix some value of ∆. We’ll show that all graphs with maximum degree ∆ are
(∆ + 1)-colorable by induction on |V |.

bc A graph with a single vertex is 1 colorable. And since ∆ > 0, we know it is
certainly ∆+ 1 colorable.

is Assume any graph withn−1vertices is∆+1 colorable, and consider an arbitrary
graph on n vertices. Remove an arbitrary vertex v. The resulting graph has n−1
vertices, and so is ∆+ 1 colorable by the IH.
Then, add v back into the graph. Since the maximum degree is ∆, v can have at
most ∆ neighbors. Thus, there is always a color left over to color v with, so our
original graph can be ∆+ 1 colored.

By induction, the claim holds for any graph with maximum degree ∆.

Example 11.8 (A Max-Cut).
There is a way to color any graph with 2 colors such that at least half of the
edges have different colored endpoints.

To see this, we’ll present an algorithm:

Max-Cut-Approx(G):
1 Color all the vertices red.
2 While there is a vertex where flipping its color increases the

number of edges with different colored endpoints, flip its color.

With this strategy, every vertex has at least half of its edges having different colored
endpoints, otherwise we would flip its color. Thus, at least half of all the edges in
the graph must have different colored endpoints. In addition, this procedure must
terminate, since each step strictly increases the number of edges with different colored
endpoints, and this quantity is bounded by |E|. ,

11.2 Planar Graphs

We’ve already kind of stumbled across planar graphs when we discussed maps. Let’s
give a more formal definition:

Definition 11.9 (Planar Graph).
A graph is planar if it can be drawn in the plane with no crossing edges.

To tie it back to colorability, we’ll state a cool theorem (which we sadly won’t be able
to prove in this class).

Theorem 11.10 (4-Color Theorem).
Every planar graph is 4-colorable.
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However, even though we can’t prove this here, there are plenty of other things about
planar graphs we can prove. Let’s start with some examples.
K3 and K4 are both planar:

If you try to draw K5, you’ll see it is hard to do so without crossing edges. It actually
isn’t planar... we’ll prove it later. Notice that this implies that K6 is also not planar,
since it contains a K5.
How about K3,3 (we use K3,3 to denote the complete bipartite graph, where we make a
bipartition of size 3 and 3, and add every possible edge)? This is actually the famous
3-utilities problem:

Where the goal is to connect every house to every utility without crossing lines. From
childhood, you may recall that this is also impossible to do; i.e., K3,3 is not planar.

Theorem 11.11 (Euler’s Formula).
In any connected planar graph, we have V −E+F = 2; where V is the number
of vertices, E is the number of edges, and F is the number of faces.

For example, in our K4, we have that

1 2

3

4

V = 4

E = 6

F = 4

so indeed V − E + F = 2. Let’s prove it for a general planar graph!

Proof. We’ll go by induction.

bc Our base cases will be trees. In this case, we have that

V − E + F = V − (V − 1) + 1 = 2 X
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is Now, any other graph will have a spanning tree. Take an edge not in the span-
ning tree, and remove it. Call the resulting graph G′. By the IH, we know that
this graph satisfies

V ′ − E′ + F ′ = 2

When we add the edge back, the number of vertices doesn’t change, the number
of edges increases by 1, and the number of faces also increases by 1. Therefore:

V − E + F = V ′ − (E′ + 1) + (F ′ + 1) = V ′ − E′ + F ′ = 2

so the claim holds.

By induction, V − E + F = 2 for any planar graph.

Proposition 11.12 (Another Planar Graph Relationship).
Any planar graph satisfies E ≤ 3V − 6.

Proof. Each face has perimeter ≥ 3, so double counting the edges of the graph gives
that

2E ≥ 3F =⇒ 2

3
E ≥ F

and then by Euler’s formula we get that

2 = V − E + F ≤ V − E +
2

3
E = V − 1

3
E =⇒ 2 ≤ V − 1

3
E

=⇒ E ≤ 3V − 6

which is what we wanted.

Corollary 11.13 (Some non-planar graphs).
The graphs K5 and K3,3 are not planar.

Proof. In K5, we have V = 5 and E = 10, so from the above we have

10 ≤ 3(5)− 6 = 9

which is a contradiction. Getting K3,3 is slightly trickier. Note that in the above proof,
we got 2E ≥ 3F . But K3,3 has no triangles (it’s bipartite, thus no odd cycles), so
actually 2E ≥ 4F . But from Euler’s formula, we get that

F = 2− V + E = 2− 6 + 9 = 5

and so 2(9) ≥ 4(5) =⇒ 18 ≥ 20, a contradiction.
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CHAPTER 12
Matchings

She is tolerable; but not handsome enough to tempt me; I am in no humour at
present to give consequence to young ladies who are slighted by other men.

—Mr. Darcy, Pride and Prejudice
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12.1 Hall’s Theorem

The following scenario is common in the real world:

People need to get stuff. However, people are tricky and they only like
certain stuff. Can we give stuff to people in a way that makes them happy?

We can represent this setup using a graph:

Notice that this is just a bipartite graph! Let’s define the notion of “give stuff to people
in a way that makes them happy.”

Definition 12.1 (Matching, Perfect Matching).
Consider a bipartite graph G = (V,E) with partition V = A ∪ B. A matching
is a collection of edges which have no endpoints in common.
We say there is a perfect matching from A to B if there is a matching which hits
every vertex in A.

Note 12.2 (Perfect Matchings).
Sometimes the term “perfect matching” is used to mean a matching where
every vertex (in A or B) is hit exactly once.
However, it is sometimes practically useful to allow unused vertices on
one side of our bipartition, which is why we use the terminology

“Perfect matching from A to B”

If this matters, we will be explicit. However, we’ll almost always be talking
about perfect matchings from the left side of the graph to the right side of
the graph.

Is there a perfect matching in our original graph from above? If you stare at it for a
bit, you’ll notice that no, there isn’t. This is because person 2 and person 4 will only
settle for the ball and nothing else. However, they can’t both have it. Therefore, no
perfect matching can exist.
Our goal moving forward is to extend this thinking to an arbitrary bipartite graph,
and come up with conditions that allow us completely classify the bipartite graphs
which have a perfect matching.
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Theorem 12.3 (Hall’s Marriage Theorem).
In any bipartite graph G = (V,E) with bipartition V = (X,Y ), G admits a
perfect matching from X to Y if and only if

∀S ⊆ X, |S| ≤ |N(S)|a (?)

The starred expression is called the Hall condition.
a Recall that N(S) denotes the union of all the neighborhoods of the vertices in S. That is, all

the vertices reachable from S by following only 1 edge.

Proof. The forward direction hopefully makes sense. If we have a perfect matching,
then any set S we choose connects to at least |S| vertices in the other side by just fol-
lowing the edges in the matching. Hence, |N(S)| ≥ |S|.
However, it’s a miracle that such a simple condition ends up being sufficient as well.
To show this, we’ll present an algorithm to find a perfect matching in a graph satis-
fying the Hall condition. It’s even more amazing that the algorithm is also extraordi-
narily simple:

Find-Perfect-Matching(G):
1 While there is an alternating path from left to right, flip the

edges along it.

However, to make sense of this, we ought to define what an alternating path is. We’ll
call a path an alternating path from left to right if:

1. It starts at a vertex in the left, and ends at a vertex on the right.

2. Alternates between edges not in the matching, and edges in the matching, start-
ing with an edge not in the matching.

For example, consider the following bipartite graph, with colored edges representing
our matching so far:

⇒
alternating path

⇒
flips to

In general, we do the following:

⇓ flips to

But notice that doing this adds +1 to the number of edges in our matching. Therefore,
every time we run step (1) in the algorithm, our matching gets 1 bigger. Therefore,
the process will definitely terminate, since there are only so many edges in the graph.
Thus, it suffices to show that when we terminate (i.e. when there are no more alter-
nating paths in the graph), then we’ve found a perfect matching.
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By way of contradiction, assume that we don’t get a perfect matching from left to right.
Our graph will look something like this:

A

B

C

D

These are the ones that our algorithm
has matched so far. We’ve moved them
to the top so it’s easier to follow.

First, note that our setB is non-empty, since otherwise we got a perfect matching from
left to right. Now:

⇒ There can be no edges from B → D, otherwise, there is a one edge alternating
path, of which we assume there are none.

⇒ There are edges from B → C. In fact, all the edges coming out of B go to C.

However, there is no need for every vertex in C to be the neighbor of a vertex in B,
only some of them. Let’s redraw our picture slightly:

A

B

B′

N(B)

C′

C

D

Now, let’s examine the set B′. There are no edges from B → D as discussed before,
but also there are no edges from (B′\B) → D, since otherwise we would have an
alternating path by following:

B → N(B)→ (B′\B)→ D

We also can’t have any edges to C ′, since then we didn’t make B′ big enough; that is,
we should have included another vertex in B: the pair of the vertex in C ′.
Therefore, all of the edges from B′ must go to N(B); i.e. N(B′) = N(B). But since
B 6= ∅ and everything in A ∩B′ has a match in N(B), we know that

|N(B′)| < |B′|

which contradicts Hall’s condition.
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12.2 Applications of Hall’s Theorem

Proposition 12.4 (Matchings in Regular Graphs).
Every d-regulara bipartite graph has a perfect matching both from left to right
and from right to left.

a Recall that a graph is d-regular if every vertex has degree exactly d.

Proof. Hall’s Theorem allows us to just check the Hall condition. Let S be an arbitrary
subset of the left. Certainly it is true that

# edges out of S ≤ # edges into N(S)

But then, since the graph is d-regular, we get:

d|S| = # edges out of S ≤ # edges into N(S) = d|N(S)|

and so |S| ≤ |N(S)|. Thus, Hall’s condition is true, and so the graph has a perfect
matching from left to right by Hall’s Theorem.
This proof also has a nice “story” version to it. We can think of every vertex in S as
throwing exactly d balls at the people on the right. If people can only catch d balls,
then certainly you need at least the same number of people to catch all the thrown
balls. Hence, |S| ≤ |N(S)|.
But now, notice that there is nothing special about left and right. We can just flip them
and use the same argument. Therefore, there is also a perfect matching from right to
left. Notice that this implies that |Right| = |Left|, since every vertex on the left and
right are involved in exactly 1 edge in the matching.

Corollary 12.5 (Partitioning Regular Bipartite Graphs).
Any d-regular bipartite graph can be partitioned into d perfect matchings.

Proof. Use the above to find a perfect matching. Then remove it. The result will be a
(d− 1)-regular bipartite graph. Repeat to get d perfect matchings.

Hall’s Theorem ends up being one of the most useful theorems in graph theory. It
often shows up in odd ways in other problems and fields of math. We’ll give one
example of this:

Example 12.6 (One Last Grid Problem).
An n× n grid has some of its cells shaded in, such that every row and column
has exactly k ≤ n shaded cells. Prove that it is possible to pick n shaded cells
such that no two are in the same row or column.

At first, it may not be obvious how graphs apply to this question, nonetheless how
Hall’s Theorem does. The intuition behind the construction we present is:

We have two sets, rows and columns, and we want to somehow “pair them
up” (i.e. pick cells, which involves specifying a row, column pair)

This seems more like Hall’s Theorem.
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We’ll represent the grid as a bipartite graph. The left hand set will be the rows, and
the right hand set will be the columns. We’ll add an edge between a row r and a
column c if the cell at (r, c) is shaded.
An example of this construction is given below:

R1

R2

R3

R4

C1

C2

C3

C4

⇒
goes to

But since there are k shaded cells in each row and column, the resulting graph will be
k-regular, and thus have a perfect matching.
If we pick the row, column pairs in this matching, then we will pick a shaded square
in each row and column, which is what we wanted. ,
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