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Abstract

Aigner and Fromme initiated the systematic study of the cop number of a graph by proving
the elegant and sharp result that in every connected planar graph, three cops are sufficient to
win a natural pursuit game against a single robber. This game, introduced by Nowakowski and
Winkler, is commonly known as Cops and Robbers in the combinatorial literature. We extend
this study to directed planar graphs, and establish separation from the undirected setting. We
exhibit a geometric construction which shows that a more sophisticated robber strategy can
indefinitely evade three cops on a particular strongly connected planar directed graph.

1 Introduction

The general study of pursuit games on graphs drew a substantial amount of research attention over
the last decade. Its appeal stemmed from the combination of its apparent proximity to natural
applications, some combinatorially elegant results and conjectures, and the challenge of developing
tools to analyze game-theoretic dynamics on graphs. Indeed, dynamic processes are typically
already significantly more difficult to analyze than properties of static graphs, and game theoretic
interactions between opposing parties drive the complexity to another level.

This paper considers the most extensively studied game in this area, commonly known as Cops
and Robbers, introduced by Nowakowski and Winkler [16], and independently by Quillot [18]. In its
classical setting, a graph is fixed, and fully known to two players, the cops and the robber. The cops
move first, placing k cops on the vertices of the given graph, at any locations of choice (multiple
cops are allowed to reside on the same vertex). The robber then chooses a single vertex at which
to start. Players alternate turns, starting with the cops, and on each turn, they choose a subset of
their agents to move across one edge each. Note that the robber has only one agent, and so decides
whether or not to move to an adjacent vertex. If the robber ends up on the same vertex as a cop,
then the cops win.

The main question is to determine, for each graph, the minimum value of k (known as the cop
number of the graph) for which there is a strategy for the cops that guarantees a win within finite
time. This game-theoretic graph invariant was introduced by Aigner and Fromme [1] shortly after
the game’s appearance in the combinatorial literature, and in that same paper, the authors proved
the elegant and sharp result that every planar graph has cop number at most three.
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This basic setting is a natural prototype for a general class of pursuit games on graphs, and it
has been the subject of numerous papers, including multiple surveys [3, 4, 8, 12] and ultimately a
book by Bonato and Nowakowski [7]. Many variants have been studied, including random graphs
[6, 15, 17], Cayley graphs [10], geometric graphs [5], directed graphs [11], and fast robbers [2], to
name just a few.

The central open conjecture in this area, due to Meyniel (communicated by Frankl [9]), is that
every n-vertex graph has cop number at most O(

√
n), which would be asymptotically tight. The

current best bounds of O(n/eΘ(
√

logn)) were proven by Lu and Peng [14], with alternate proofs
independently discovered by Frieze, Krivelevich, and Loh [11], and Scott and Sudakov [19].

The same paper of Frieze, Loh, and Krivelevich also formally started the systematic study of
the game in directed graphs (where the cops and robber can only move along the direction of each
edge), mainly in the context of Meyniel’s conjecture. Specifically, the focus was on n-vertex strongly
connected digraphs, because the problem for a general digraph easily reduces to the problems on
its strongly connected components. As usual, digraphs turn out to be more complicated than

undirected graphs, and they obtained a weaker upper bound of O(n · (log logn)2

logn ), which is still the
current best bound for the cop number in directed graphs. The lower bound from undirected graphs
carries over to the directed case (simply replace each edge with a pair of antiparallel directed edges),
but there was no improvement.

This paper combines the directed graph inquiry with the original focus of Aigner and Fromme
on planar graphs. Specifically, we ask to determine, for each n, the maximum cop number of any
n-vertex planar digraph. Unfortunately, the approach of Aigner and Fromme for their upper bound
(of three cops) completely breaks down, as it relied on repeated clever applications of the following
simple and elegant observation.

Lemma 1.1. In an undirected graph, if P is a geodesic (a shortest path between a pair of vertices),
then a single cop can guard all of the vertices of P : after a bounded number of turns, if the robber
ever moves onto a vertex of P , it will be captured by that cop.

Geodesics are particularly useful in planar graphs because they can provide powerful separation
properties in the plane, thereby efficiently trapping the robber in successively smaller regions. The
proof of Lemma 1.1 employs the cop strategy of always moving towards the vertex of P which is
nearest to the robber. The geodesic’s minimality guarantees that the cop will eventually be able to
reach every vertex of P at least as quickly as the robber. However, this strategy is clearly impossible
in directed graphs, and indeed, there is no upper bound written in the literature. For completeness,
we observe that the Lipton-Tarjan Planar Separator Theorem gives a nontrivial upper bound, but
it is still far from constant. The proof will appear in Section 4.

Proposition 1.1. Every n-vertex strongly connected planar digraph has cop number at most O(
√
n).

The main open question for planar digraphs is whether the cop number is always bounded by
a constant in each strongly connected component. It is then interesting to examine lower bound
constructions. Again, basic methods do not work, as many previous results (including the tightness
of Meyniel’s conjecture) relied on another simple observation.

Lemma 1.2. Every undirected graph with minimum degree δ and no 3- or 4-cycles has cop number
at least δ.
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This follows from the elementary robber strategy of remaining stationary until a cop moves to
an adjacent vertex, and then moving to another adjacent vertex which has no cops adjacent to
it. This lemma obviously extends to directed graphs with a similar strategy: every digraph with
minimum out-degree δ+ and an appropriate girth condition (e.g., undirected girth at least five)
has cop number at least 1 + δ+. It suffices to focus on constructions in which each unordered pair
of vertices induces at most one directed edge, because if antiparallel edge pairs exist, the entire
digraph can be replaced by one with no antiparallel pairs by subdividing every edge with a new
unique vertex, and replacing each antiparallel edge pair by a pair of independent 2-edge directed
paths. Since every n-vertex planar graph has fewer than 3n edges, any such construction will always
have δ+ ≤ 2, and so the standard robber strategy cannot even be used to improve the lower bound
by any amount at all.

The main contribution of this paper is a geometrically-inspired construction which introduces
and employs a more sophisticated strategy for the robber, and breaks through the lower bound for
undirected graphs.

Theorem 1.1. There is a strongly connected planar digraph which requires more than three cops
to capture the robber.

The rest of this paper is organized as follows. The construction is described in the next section,
and analyzed in the section thereafter. We close with a short proof of Proposition 1.1 in the final
section.

2 Construction

We will create a geometric construction which is clearly embeddable on the surface of a sphere, at
which point a standard stereographic projection produces a planar oriented graph. Although it is
impossible to construct a planar oriented graph with all out-degrees at least 3, it is natural to start
with an object which is as close as possible. Indeed, consider an icosahedron (Figure 1), which as
an undirected graph is a triangulation with all degrees equal to 5. We use this as the starting point
for a series of steps which ultimately produce our construction.

Figure 1: Icosahedron Figure 2: Truncated icosahe-
dron

Truncate each of its vertices to obtain the truncated icosahedron in Figure 2. Observe that
each vertex is replaced with a pentagon, and each of the triangular faces is replaced by a hexagon.
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Next, truncate again, this time along all edges of the original icosahedron (which are now precisely
the edges between pentagons). This operation produces the Archimedean solid in Figure 3, which
is known as the great rhombicosidodecahedron, or truncated icosidodecahedron.1

Observe that the original icosahedron vertices have been replaced by decagons, the original
icosahedron edges have been replaced by quadrilaterals, and the original icosahedron faces have
been replaced by hexagons. Also observe that each quadrilateral links two decagons, and naturally
identifies a pair of parallel edges between decagons, as highlighted in Figure 4.

Figure 3: Great rhombicosi-
dodecahedron

Figure 4: Highlighting paral-
lel edges

We use this fundamental structure as the backbone for our construction. Introduce a new
vertex at the center of each decagon, called a center, and join it to each vertex of its decagon with a
spoke, as in Figure 5. We will use the term unit to refer to the whole structure of a single decagon,
including its center and spokes. Two units are neighbors if they are joined by one of the highlighted
edges in Figure 4.

The last step is to give directions and lengths to all edges. Observe that between each pair of
neighboring units, we can always find a hexagon as highlighted in Figure 6. In each such hexagon,
orient all edges counter-clockwise. This orientation is consistent because the sphere is an orientable
surface. Ultimately, we obtain the structure of Figure 7.

All green edges between units are now consistently oriented. Subdivide each of them with 999
new vertices so that it takes 1,000 turns to move from one end of a green edge to the other end.
Likewise, subdivide each spoke between a center and its decagon with 9 new vertices so that each
spoke now has length 10. The only edges remaining to be oriented are the decagon edges. Replace
each of them with a directed chain-like structure as in Figure 8. It now takes 16 turns to move
from one original decagon vertex to another, and at most one additional turn to reverse direction
when traversing the chain.

3 Analysis

In this section, we prove that our construction requires more than three cops to capture the robber.
We achieve this by analyzing the robber’s travel from unit to unit. Note that each unit has five
neighboring units, and in order to travel from a unit U1 to a neighboring unit U2, there is exactly

1All polyhedron images were generated by http://gratrix.net/polyhedra/webgl/poly.xhtml.
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Figure 5: Point of view from any unit (without directions on edges). Note that edges connecting
units are green.
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Figure 6: Point of view from any unit, highlighting one hexagon.

Figure 7: Point of view from any unit, with directions determined.
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Figure 8: Replacement for one original decagon edge.

one exit vertex on the perimeter of U1 from which the robber can directly travel along a directed
path of length 1000 to reach U2. Each unit therefore has five exits. It is convenient to make the
following observation.

Lemma 3.1. Suppose that the robber is at the center of a unit U , and it is the robber’s turn. Let
c be the number of cops in unit U which are not on spokes that are oriented towards the center.
Then, for any set S of more than c exits of U , there is at least one vertex in S that the robber can
reach in 10 turns, without being captured by any of the cops currently in U .

Proof. The robber will move directly toward one of the vertices of S. It is clear that with this
strategy, the robber cannot be stopped by any cop who is currently on a spoke oriented towards
the center. Furthermore, since each decagon edge was replaced by a chain which takes 16 turns to
traverse from end to end, it is clear that every other cop in U can only be within 10 moves of at
most one vertex of S. Since |S| > c, there will be a choice for the robber which avoids all of the
cops.

We will ultimately break into cases based upon how many cops are in the robber’s current unit.
It turns out that the most delicate case is when there is exactly one cop in the robber’s unit, and
the following observation will cleanly handle that situation, in conjunction with the previous result.

Lemma 3.2. Suppose that the robber is on the perimeter of a unit, and that unit has exactly one
cop, located one vertex away from the center along a spoke which is oriented away from the center.
Then, the robber can reach the center within 27 moves, without that cop catching it.

Proof. The robber will follow a shortest directed path from its current location to the center. Since
the spokes alternate in orientation toward and away from the center, and it only takes at most one
turn to change direction along a chain on the perimeter, it is clear that the robber will reach the
center without any interference from the cop, who starts 9 moves away from the perimeter along an
outward spoke. The maximum number of moves required for the robber is 27, because it may take
the robber 1 move to change direction along a perimeter chain, 16 moves to traverse the perimeter
to the nearest inward spoke, and 10 more moves to traverse the inward spoke to the center.

We are now ready to prove that three cops are insufficient to capture the robber on our con-
struction.

Proof of Theorem 1.1. At the start of the game, three cops select their positions. Since the icosa-
hedron has 12 vertices, the robber is free to select a position which is the center of a unit that
starts with no cops. The analysis now proceeds by considering how the robber moves from unit to
neighboring unit.
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The robber remains at a center until a cop arrives at an adjacent vertex (along an inbound
spoke in its unit). It is then the robber’s turn. It suffices to show that the robber can always move
from this state to a state in which it is again at a center (possibly of a different unit), with a cop
adjacent along an inbound spoke, and it is the robber’s turn. This will prove that the robber can
escape capture indefinitely.

So, let us focus on the situation in which the robber is at a center of some unit U , with an
immediately adjacent inbound cop. If there are any cops on length-1000 unit-to-unit directed
paths towards U , without loss of generality, assume that they are already at the corresponding
entry vertices along the perimeter of U . (This only makes it more difficult for the robber to escape
to a neighboring unit center, because cops that are trapped in transit along a unit-to-unit path
have nowhere to go but forward to U .) Note that there are five exit vertices from U , each to a
distinct neighboring unit. The robber’s strategy will be to use one of them to exit to a neighboring
unit which cannot be reached more quickly by any cop.

We split into three cases, depending on how many cops are in unit U . If all three cops are in
U , then Lemma 3.1 implies that of the five exits from U , there is at least one option which can be
reached with no interference from the cops. The robber moves directly toward one of these, takes
the length-1000 directed path to the neighboring unit, and then moves directly toward that unit’s
center, completing this case.

Next, consider the case when there are exactly two cops in U . The cop outside U is in some
unit U ′, but even if one considers U ′ together with its five neigboring units, these six total units
overlap with at most three neighboring units of U . (We have used the fact that in an icosahedron,
among the five neighbors of a fixed vertex u, the overlap size with a different vertex u′ and its
neighborhood is largest when u′ is a neighbor of u, at which point it has size three.) The robber
will seek an exit which does not go to U ′ or a neighboring unit of U ′. Since there were five exits,
there are still at least two left. Lemma 3.1 then implies that there is at least one option which can
be reached with no interference from the cops in U , and the robber safely proceeds through that
exit to the center of that neighboring unit.

The final case has exactly one cop in U . The previous argument no longer works, because each
of the two cops outside U can in theory block up to three neighboring units of U (as in the previous
case’s analysis), and could together block all five neighboring units of U . The robber counters with
a different strategy. It is this twist in this case which improves the lower bound from three to four,
and here we leverage the length-1000 paths between neighboring units. The key insight is that as
long as no other cops start moving toward U , the robber can evade the single cop in U indefinitely.
However, the moment a cop starts down a long one-way street towards U , it stops guarding three
neighboring units, and in fact guards zero neighboring units. We formalize this as follows.

The robber begins by moving directly along an outbound spoke, and reaches a vertex on the
perimeter of unit U in 10 moves. It then stays stationary until the cop in U moves onto an adjacent
vertex. It then moves along the perimeter of U , in a direction away from the cop, moving only
when the cop moves onto an adjacent vertex along an edge directed towards it. (So, it is possible
that the robber spends a substantial amount of time not moving at all, if the cop is moving through
vertices which are not adjacent to the robber.)

The robber continues this simple evasion strategy until one of the other two cops takes a step
into a length-1000 unit-to-unit directed path leading to U . At this point, the robber switches
strategy again, to exit U within 200 turns. To achieve this, observe that the remaining cop who is
neither in U nor trapped in the length-1000 path to U can reach at most three neighboring units
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of U within 1500 turns. Let S be the set of exits of U which do not lead to those units.
The robber selects a direction away from the cop in U , and consistently moves along the

perimeter in that direction until he reaches one of the (at least two) exits in S. If during this
process, the cop never passes through the center, then the robber will definitely reach its exit
without being captured by the cop in U . Since each decagon edge was replaced by a 16-turn chain,
this will take at most 160 turns.

Otherwise, if the cop attempts to route through the center, the robber suddenly changes strategy
again at the moment the cop moves onto a vertex adjacent to the center along an outbound spoke
(which must happen on any route through the center). At that moment, the robber employs the
strategy in Lemma 3.2, and reaches the center within 27 more moves without interference from
that cop. Then, the robber changes strategy again to that in Lemma 3.1, and since |S| > 1, it will
definitely be able to reach an exit in S in 10 more turns, without any interference from the cop
in U . Therefore, the robber will be able to reach an exit in S within a total of 200 turns, during
which the cop en route from a neighboring unit (along a length-1000 directed path) is still far off.
The robber then traverses the length-1000 directed path out of this exit, and reaches the center of
the corresponding neighboring unit within 1500 turns, without any interference from any cops, as
claimed.

4 Upper bound

We close with a very short treatment of the upper bound, which applies the Planar Separator
Theorem of Lipton and Tarjan [13].

Theorem 4.1. [Lipton and Tarjan CITE] There is an absolute constant c for which the following
holds. Every n-vertex planar graph can be partitioned into three sets A, B, and C such that
|A| ≤ 2n/3, |B| ≤ 2n/3, |C| ≤ c

√
n, and there is no edge between A and B.

Proof of Theorem 1.1. Initially, put k
√
n cops at an arbitrary vertex, and call them free cops. The

constant k will be determined at the end of the proof. By continuously separating G with these
cops, we will show that the cops win the game. Let G1 = G, and for i ≥ 1, construct Gi+1 with
the following algorithm.

Using Lemma 4.1, let Gi = Ai∪Bi∪Ci such that |Ai| ≤ 2|Gi|/3, |Bi| ≤ 2|Gi|/3, |Ci| ≤ c
√
|Gi|,

and there is no edge in Gi between Ai and Bi. Send free cops to each vertex of Ci without regard
to the robber’s actions. Note that this is always possible because G is strongly connected. This
step costs at most c

√
|Gi| free cops and these cops will not move afterward, thus becoming static

cops. If the robber was not caught during this process, the robber is now permanently trapped
in either Ai or Bi. Set Gi+1 to be the graph induced by the corresponding set. Thus, |G1| = n,
|G2| ≤ 2n/3, . . . , |Gi| ≤ (2

3)i−1n. The i-th step costs c
√
|Gi| free cops. Thus, the number of cops

needed to win is at most

c

∞∑
i=0

√(
2

3

)i

n = c
√
n

∞∑
i=0

(√
2

3

)i

,

which is at most k
√
n for some k, because the sum is a convergent geometric series.
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