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Abstract

Let i;(G) be the number of independent sets of size ¢ in a graph G. Engbers and Galvin asked
how large i;(G) could be in graphs with minimum degree at least §. They further conjectured
that when n > 2§ and ¢ > 3, i,(G) is maximized by the complete bipartite graph Ks,_s. This
conjecture has drawn the attention of many researchers recently. In this short note, we prove this
conjecture.

1 Introduction

Given a finite graph G, let i;(G) be the number of independent sets of size ¢t in a graph, and let
i(G) = Y4~ 1t(G) be the total number of independent sets. There are many extremal results on i(G)
and i;(G) over families of graphs with various degree restrictions. Kahn [6] and Zhao [11] studied
the maximum number of independent sets in a d-regular graph. Relaxing the regularity constraint
to a minimum degree condition, Galvin [5] conjectured that the number of independent sets in an
n-vertex graph with minimum degree § < 5 is maximized by a complete bipartite graph Ks, 5.
This conjecture was recently proved (in stronger form) by Cutler and Radcliffe [3] for all n and 0,
and they characterized the extremal graphs for § > § as well.

One can further strengthen Galvin’s conjecture by asking whether the extremal graphs also
simultaneously maximize the number of independent sets of size ¢, for all ¢. This claim unfortunately
is too strong, as there are easy counterexamples for ¢ = 2. On the other hand, no such examples are

known for ¢t > 3. Moreover, in this case Engbers and Galvin [4] made the following conjecture.

Conjecture 1.1. For every t > 3 and § < n/2, the complete bipartite graph Ks,_s5 mazimizes the
number of independent sets of size t, over all n-vertex graphs with minimum degree at least §.

Engbers and Galvin [4] proved this for § = 2 and § = 3, and for all 6 > 3, they proved it when
t > 26 + 1. Alexander, Cutler, and Mink [1] proved it for the entire range of ¢ for bipartite graphs,
but it appeared nontrivial to extend the result to general graphs. The first result for all graphs
and all t was obtained by Law and McDiarmid [9], who proved the statement for § < n'/3/2. This

(CH16+2) < 4y,

was improved by Alexander and Mink [2], who required that In this short note, we

completely resolve this conjecture.

Theorem 1.2. Let 6 < n/2. For every t > 3, every n-vertex graph G with minimum degree at least
d satisfies i (G) < it (K5n—5), and when t <6, Ks,_s is the unique extremal graph.
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2 Proof

We will work with the complementary graph, and count cliques instead of independent sets. Cutler
and Radcliffe [3] also discovered that the complement was more naturally amenable to extension; we
will touch on this in our concluding remarks. Let us define some notation for use in our proof. A
t-clique is a clique with ¢ vertices. For a graph G = (V, E), G is its complement, and k;(G) is the
number of t-cliques in G. For any vertex v € V, N(v) is the set of the neighbors of v, d(v) is the degree
of v, and k¢ (v) is the number of ¢-cliques which contain vertex v. Note that } i ki(v) = thi(G). We
also define G+ H as the graph consisting of the disjoint union of two graphs G and H. By considering
the complementary graph, it is clear that our main theorem is equivalent to the following statement.

Proposition 2.1. Let 1 < b < A+ 1. For allt > 3, ki(G) is maximized by Kay1 + Kp, over
(A 41+ b)-vertex graphs with mazimum degree at most A. When t < b, this is the unique extremal
graph, and when b <t < A+1, the extremal graphs are Kay1+ H, where H is an arbitrary b-vertex
graph.

Remark. When b < 0, the number of ¢-cliques in graphs with maximum degree at most A is trivially
maximized by the complete graph. On the other hand, when b > (A+1), the problem becomes much
more difficult, and our investigation is still ongoing. This paper focuses on the first complete segment
1 <b < A+ 1, which, as mentioned in the introduction, was previously attempted in [2, 4, 9].

Although our result holds for all ¢ > 3, it turns out that the main step is to establish it for the
case t = 3 using induction and double-counting. Afterward, a separate argument will reduce the
general ¢ > 3 case to this case of t = 3.

Lemma 2.2. Proposition 2.1 is true when t = 3.

Proof. We proceed by induction on b. The base case b = 0 is trivial. Now assume it is true for b — 1.
Suppose first that ks(v) < (bgl) for some vertex v. Applying the inductive hypothesis to G — v, we

see that
k3(G) < k3(G —v) + k3(v) < <A;1> + (b;1> + (b; 1) < <A;—1> + (g) ;

and equality holds if and only if G — v is optimal and k3(v) = (bgl). By the inductive hypothesis,
G —vis Kay1 + H', where H' is a (b — 1)-vertex graph. The maximum degree restriction forces v’s
neighbors to be entirely in H', and so G = Ka41 + H for some b-vertex graph H. Moreover, since
k3(v) = (bgl) we get that for b > 3, H is a clique.

This leaves us with the case where k3(v) > (bgl) for every vertex v, which forces b < d(v) < A.
We will show that here, the number of 3-cliques is strictly suboptimal. The number of triples (u, v, w)
where wv is an edge and vw is not an edge is clearly > 1" ; d(v)(n — 1 — d(v)). Also, every set of
3 vertices either contributes 0 to this sum (if either all or none of the 3 edges between them are
present), or contributes 2 (if they induce exactly 1 or exactly 2 edges). Therefore,

2|(5) - (5(6) + @) = T dto)n 1 - dlw).
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Rearranging this equality and applying k3(G) > 0, we find

n 1
w6 < (3) - p L)1 dlw). )
Since we already bounded b < d(v) < A, and b+ A = n—1 by definition, we have d(v)(n—1—d(v)) >
bA. Plugging this back into (1) and using n = (A + 1) + b,

0= ()22 (1) () 22521 ),

because b < A. This completes the case where every vertex has k3(v) > (bgl). O

We reduce the general case to the case of ¢ = 3 via the following variant of the celebrated theorem
of Kruskal-Katona [7, 8], which appears as Exercise 31b in Chapter 13 of from Lovész’s book [10].
Here, the generalized binomial coefficient () is defined to be the product (z)(z —1)(z —2) - (z —
k + 1), which exists for non-integral z.

Theorem 2.3. Let k > 3 be an integer, and let x > k be a real number. Then, every graph with
ezxactly (g) edges contains at most (g]g) cliques of order k.

We now use Lemma 2.2 and Theorem 2.3 to finish the general case of Proposition 2.1.
Lemma 2.4. If Proposition 2.1 is true for t = 3, then it is also true for t > 3.

Proof. Fix any t > 4. We proceed by induction on b. The base case b = 0 is trivial. For the
inductive step, assume the result is true for b— 1. If there is a vertex v such that k3(v) < (bgl), then
by applying Theorem 2.3 to the subgraph induced by N(v), we find that there are at most (It’j)
cliques of order t — 1 entirely contained in N(v). The t-cliques which contain v correspond bijectively
to the (t — 1)-cliques in N(v), and so ki(v) < (lt)j) The same argument used at the beginning of
Lemma 2.2 then correctly establishes the bound and characterizes the extremal graphs.

If some k3(v) = (%), then the maximum degree condition implies that the graph contains a
K41 which is disconnected from the remaining b < A+ 1 vertices, and the result also easily follows.
Therefore, it remains to consider the case where all (bgl) < ks(v) < (g), in which we will prove that
the number of t-cliques is strictly suboptimal. It is well-known and standard that for each fixed k,
the binomial coefficient (i) is strictly convex and increasing in the real variable x on the interval
xz > k — 1. Hence, (Z) = 1 implies that (i) < 1forall k—1 < x < k, and so Theorem 2.3 then

actually applies for all z > k — 1. Thus, if we define u(x) to be the positive root of (g) =z, ie.,

u(z) = L8 V21+8”T, and let
0 if u(z) <t—2
= 2
fi() { (4) if u(z) >t -2, 2)

the application of Kruskal-Katona in the previous paragraph establishes that ki (v) < fi(ks(v)).
We will also need that fi(x) is strictly convex for x > (tgz). For this, observe that by the gen-

eralized product rule, f/(z) = v - [(u—1)(u—2) - (u— (t —2)) +~~-+12L(u —1)--(u—(t—3))],
Vi1+8z”

(W)u—-0C)=1- 5%. Note that this is a positive increasing function when C' € {1,2} and

which is «/(z) multiplied by a sum of ¢ — 1 products. Since u/(z) = for any constant C,




x> (tgg). In particular, since t > 4, each of the ¢ — 1 products contains a factor of (v —1) or (u—2),
or possibly both; we can then always select one of them to absorb the (u') factor, and conclude
that f/(x) is the sum of ¢ — 1 products, each of which is composed of ¢ — 2 factors that are positive
increasing functions on x > (tf). Thus fi(z) is strictly convex on that domain, and since f;(z) =0
for x < (t;2)7 it is convex everywhere.

If t = A 4+ 1, there will be no t-cliques in G unless G contains a K41, which must be isolated
because of the maximum degree condition; we are then finished as before. Hence we may assume ¢t <
A for the remainder, which in particular implies that f;(z) is strictly convex and strictly increasing
in the neighborhood of z ~ (%) Let the vertices be vy,...,v,, and define z; = k3(v;). We have
the(G) = Y ey kie(v) < 30 fi(w), and so it suffices to show that ) fi(x;) < t(Azrl) + t(lt’) under

the following conditions, the latter of which comes from Lemma 2.2.

(e ) Basl)H) o

To this end, consider a tuple of real numbers (z1, ..., z,) which satisfies the conditions. Although
(3) constrains each z; within an open interval, we will perturb the x; within the closed interval which

includes the endpoints, in such a way that the objective Y fi(z;) is nondecreasing, and we will reach
A+1
t

of strict convexity and monotonicity around x =~ (%) to show that one of the steps strictly increased
> fi(x;), which will complete the proof.

First, since the upper limit for > x; in (3) is achievable by setting A + 1 of the z; to (%) and b
of the x; to (bgl), and fi(x) is nondecreasing, we may replace the x;’s with another tuple which has

a tuple which achieves an objective value of exactly t( ) +t (lt’) Finally, we will use our observation

equality for > z; in (3), and all (bgl) <x; < (%) Next, by convexity of fi(x), we may push apart z;
and z; while conserving their sum, and the objective is nondecreasing. After a finite number of steps,
we arrive at a tuple in which all but at most one of the z; is equal to either the lower limit (bgl) or
the upper limit (é), and Y x; = 3(A; 1) + 3(3). However, since this value of ) x; is achievable by
A + 1 many (%)’S and b many (bgl)’s, this implies that in fact, the tuple of z;’s has precisely this
form. (To see this, note that by an affine transformation, the statement is equivalent to the fact that
if n and k are integers, and 0 < y; < 1 are n real numbers which sum to k, all but one of which is

at an endpoint, then exactly k of the y; are equal to 1 and the rest are equal to 0.) Thus, our final

e ) () = (1) )

as claimed. Finally, since some x; take the value (%), the strictness of f;(z)’s monotonicity and

objective is equal to

convexity in the neighborhood x = (A) implies that at some stage of our process, we strictly increased

2
the objective. Therefore, in this case where all (bgl) < ks(v) < (%), the number of ¢-cliques is indeed

sub-optimal, and our proof is complete. O

3 Concluding remarks

The natural generalization of Proposition 2.1 considers the maximum number of ¢-cliques in graphs
with maximum degree A and n = a(A + 1) + b vertices, where 0 < b < A 4+ 1. In the language



of independent sets, this question was also proposed by Engbers and Galvin [4]. The case a = 0 is
trivial, and Proposition 2.1 completely solves the case a = 1. We believe that also for ¢ > 1 and
t > 3, ki(G) is maximized by aKa11 + Kp, over (a(A + 1) + b)-vertex graphs with maximum degree
at most A.

An easy double-counting argument shows that it is true when b = 0. When a > 2 and b > 0,
the problem seems considerably more delicate. Nevertheless, the same proof that we used in Lemma
2.4 (mutatis mutandis) shows that the general case ¢ > 3 of this problem can be reduced to the case
t = 3. Therefore, the most intriguing and challenging part is to show that aKa11 + Kp maximizes
the number of triangles over all graphs with (a(A + 1) + b) vertices and maximum degree at most
A. We have some partial results on this main case, but our investigation is still ongoing.
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