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@ (Robinson, Wormald) Gz.reg is Hamiltonian whp

e (Bohman, Frieze) Gs oyt is Hamiltonian whp.
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@ (Cooper, Frieze) Ds.in 2.out is Hamiltonian whp.
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DEFINITION (3-UNIFORM HYPERGRAPH)

Hp p;3: each triple appears independently with probability p.

/
Q)
Tight H-cycle

Loose H-cycle

o (Frieze) H, p:3 has loose H-cycle whp if p > Klogn 4 | n.

n
@ (Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.
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RAINBOW HAMILTON CYCLES

QUESTION

Does G, p have a rainbow Hamilton cycle if edges are randomly
colored from k colors?

OBSERVATIONS

@ Must have p >

log n+log log n+w(n)
n
o Must have k > n.

with w(n) — oo.

o (Cooper, Frieze) True if p = 2217 and x = 20n.

@ (Janson, Wormald) True if Go,.reg is randomly colored with
each of kK = n colors appearing exactly r > 4 times.
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LLOOSE VS. RAINBOW H-CYCLES

e Connect 3-uniform hypergraphs (loose Hamiltonicity)
to colored graphs (rainbow Hamilton cycles).

)
@
Hypergraph
(bisected vertex set)

Auxiliary graph
@ Frieze applied Johansson-Kahn-Vu to find perfect matchings

@ Apply Janson-Wormald to find rainbow H-cycle in randomly
colored random regular graph
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RAINBOW HAMILTON CYCLES

(1+€)logn
n

For any fixed € > 0, if p = , then G, , contains a rainbow
Hamilton cycle whp when its edges are randomly colored from
k = (1+ €)n colors.

Remarks:
@ Asymptotically best possible, both in terms of p and k.

e Still holds when € tends (slowly) to zero.
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@ Degree of fixed vertex is Bin [n — 1, p]; expectation ~ log n
o By Chernoff, P [deg(v) < %E] < e 3E=n3.

e Typically, all but < /n vertices have degree > % log n.
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: 1
, then almost all vertices have degree > 75 log n

First attempt to find rainbow H-cycle:

@ Suppose all degrees > % log n.

@ At each vertex, expose list of colors that appear.

% ° N ° °

[ I | n LN | n [ |

n | N | | | | N | | N | n n
@ Select 3 colors per vertex s.t. all selected colors are different.
@ Expose those edges only; like G3_oyt-

Already requires 3n colors.
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Reserve p’ = § 'Og” and k' = & for 2nd phase.

C
C
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MAIN LEMMA
Using only edges and colors from Phase 1, there is a partition into
rainbow intervals, such that:

A B A B A B A B A B
@ All intervals have length L = 1—4

@ Each A-vertex has > 4601_ log n B-neighbors in Phase 2.

e Each B-vertex has > 460L log n A-neighbors in Phase 2.

\
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FINAL RAINBOW LINKING

@ Expose Phase 2 colors between A- and B-vertices.

@ Select 2 colors per vertex s.t. all selected colors are different.

@ Now only requires 2 - 2—,_” = %en colors, out of Phase 2's 5.

@ Aux. digraph: vertices are intervals; edges oriented B — A.

@ Directed H-cycle in Dy jn 2oyt links all intervals via Phase 2. I
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CONSTRUCTING INTERVALS

THEOREM (AJTAI, KOMLOS, SZEMEREDI; DE LA VEGA)

Let p= 7, where 0 <w < logn—3loglogn. Then G, has a
path of length (1 — 1)n whp.

To obtain intervals:
@ Adapting proof of de la Vega, find rainbow path of length
n— o(n) in Phase 1.
@ Break the long path into intervals of length L = 1?4.

@ Absorb all missing vertices into system of intervals, using
minimum degree two. O
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CONCLUSION

(1+¢€)logn
n

For any fixed € > 0, if p = , then G, , contains a rainbow
Hamilton cycle whp when its edges are randomly colored from
k = (1 + €)n colors.

Edge-colored random graph process:
@ Start with n isolated vertices.

@ Each round, add a new edge, selected uniformly at random
from all missing edges.

@ Randomly color the new edge from a set C of size at least n.

Does a rainbow Hamilton cycle appear as soon as the minimum
degree is at least two and at least n colors have arrived?
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