RAINBOW HAMILTON CYCLES

Po-Shen Loh Carnegie Mellon University

Joint work with Alan Frieze

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A cycle is Hamiltonian if it visits every vertex exactly once.

A cycle is Hamiltonian if it visits every vertex exactly once.

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

A cycle is Hamiltonian if it visits every vertex exactly once.

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

• (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

A cycle is Hamiltonian if it visits every vertex exactly once.

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

• (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• (Robinson, Wormald) G_{3-reg} is Hamiltonian **whp**.

A cycle is Hamiltonian if it visits every vertex exactly once.

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- (Robinson, Wormald) G_{3-reg} is Hamiltonian **whp**.
- (Bohman, Frieze) G_{3-out} is Hamiltonian **whp**.

A cycle is Hamiltonian if it visits every vertex exactly once.

DEFINITION

Erdős-Rényi $G_{n,p}$: edges appear independently with probability p.

- (Komlós, Szemerédi; Bollobás) $G_{n,p}$ is Hamiltonian whp if $p = \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- (Robinson, Wormald) G_{3-reg} is Hamiltonian **whp**.
- (Bohman, Frieze) G_{3-out} is Hamiltonian **whp**.

• (Cooper, Frieze) D_{2-in,2-out} is Hamiltonian **whp**.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $H_{n,p;3}$: each triple appears independently with probability p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $H_{n,p;3}$: each triple appears independently with probability p.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

 $H_{n,p;3}$: each triple appears independently with probability p.

Loose H-cycle

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

 $H_{n,p;3}$: each triple appears independently with probability p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $H_{n,p;3}$: each triple appears independently with probability p.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 $H_{n,p;3}$: each triple appears independently with probability p.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

• (Frieze) $H_{n,p;3}$ has loose H-cycle whp if $p > \frac{K \log n}{n^2}$, $4 \mid n$.

 $H_{n,p;3}$: each triple appears independently with probability p.

- (Frieze) $H_{n,p;3}$ has loose H-cycle whp if $p > \frac{K \log n}{n^2}$, $4 \mid n$.
- (Dudek, Frieze) Asymptotically answered for all uniformities, and all degrees of loose-ness.

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

OBSERVATIONS

- Must have $p > \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- Must have $\kappa \geq n$.

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

OBSERVATIONS

- Must have $p > \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- Must have $\kappa \geq n$.
- (Cooper, Frieze) True if $p = \frac{20 \log n}{n}$ and $\kappa = 20n$.

Does $G_{n,p}$ have a rainbow Hamilton cycle if edges are randomly colored from κ colors?

OBSERVATIONS

- Must have $p > \frac{\log n + \log \log n + \omega(n)}{n}$ with $\omega(n) \to \infty$.
- Must have $\kappa \geq n$.
- (Cooper, Frieze) True if $p = \frac{20 \log n}{n}$ and $\kappa = 20n$.
- (Janson, Wormald) True if G_{2r-reg} is randomly colored with each of κ = n colors appearing exactly r ≥ 4 times.

• Connect 3-uniform hypergraphs to colored graphs

• Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)

• Connect 3-uniform hypergraphs to colored graphs.

Hypergraph (bisected vertex set)

• Connect 3-uniform hypergraphs to colored graphs.

(bisected vertex set)

Auxiliary graph

• Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• Connect 3-uniform hypergraphs (loose Hamiltonicity) to colored graphs (rainbow Hamilton cycles).

- Frieze applied Johansson-Kahn-Vu to find perfect matchings.
- Apply Janson-Wormald to find rainbow H-cycle in randomly colored random regular graph.

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon)\log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle **whp** when its edges are randomly colored from $\kappa = (1+\epsilon)n$ colors.

Remarks:

• Asymptotically best possible, both in terms of p and κ .

• Still holds when ϵ tends (slowly) to zero.

If
$$p = \frac{(1+\epsilon)\log n}{n}$$
, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

Justification:

• Degree of fixed vertex is Bin [n-1, p]; expectation $\sim \log n$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

Justification:

• Degree of fixed vertex is Bin [n-1, p]; expectation $\sim \log n$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• By Chernoff, $\mathbb{P}\left[\deg(v) < \frac{1}{10}\mathbb{E}\right] < e^{-\frac{2}{3}\mathbb{E}} = n^{-\frac{2}{3}}$.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

Justification:

- Degree of fixed vertex is Bin [n − 1, p]; expectation ~ log n
- By Chernoff, $\mathbb{P}\left[\deg(v) < \frac{1}{10}\mathbb{E}\right] < e^{-\frac{2}{3}\mathbb{E}} = n^{-\frac{2}{3}}$.
- Typically, all but $< \sqrt[3]{n}$ vertices have degree $\geq \frac{1}{10} \log n$.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

• Select 3 colors per vertex s.t. all selected colors are different.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

• Select 3 colors per vertex s.t. all selected colors are different.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

- Select 3 colors per vertex s.t. all selected colors are different.
- Expose those edges only; like G_{3-out}.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

• Select 3 colors per vertex s.t. all selected colors are different.

• Expose those edges only; like G_{3-out}.

If $p = \frac{(1+\epsilon)\log n}{n}$, then almost all vertices have degree $\geq \frac{1}{10}\log n$.

First attempt to find rainbow H-cycle:

- Suppose all degrees $\geq \frac{1}{10} \log n$.
- At each vertex, expose list of colors that appear.

- Select 3 colors per vertex s.t. all selected colors are different.
- Expose those edges only; like G_{3-out}.

Already requires 3n colors.

Sprinkling

Reserve
$$p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$$
 and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Sprinkling

Reserve
$$p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$$
 and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.

MAIN LEMMA

Using only edges and colors from Phase 1, there is a partition into rainbow intervals, such that:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• All intervals have length $L = \frac{14}{\epsilon}$.

Sprinkling

Reserve
$$p' = \frac{\epsilon}{2} \cdot \frac{\log n}{n}$$
 and $\kappa' = \frac{\epsilon n}{2}$ for 2nd phase.

MAIN LEMMA

Using only edges and colors from Phase 1, there is a partition into rainbow intervals, such that:

- All intervals have length $L = \frac{14}{\epsilon}$.
- Each A-vertex has $\geq \frac{\epsilon^2}{40L} \log n$ B-neighbors in Phase 2.
- Each *B*-vertex has $\geq \frac{\epsilon^2}{40L} \log n A$ -neighbors in Phase 2.

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• Now only requires $2 \cdot \frac{2n}{L} = \frac{2}{7} \epsilon n$ colors, out of Phase 2's $\frac{\epsilon n}{2}$.

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.
- Now only requires $2 \cdot \frac{2n}{I} = \frac{2}{7} \epsilon n$ colors, out of Phase 2's $\frac{\epsilon n}{2}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

- Expose Phase 2 colors between A- and B-vertices.
- Select 2 colors per vertex s.t. all selected colors are different.
- Now only requires $2 \cdot \frac{2n}{L} = \frac{2}{7} \epsilon n$ colors, out of Phase 2's $\frac{\epsilon n}{2}$.

- Aux. digraph: vertices are intervals; edges oriented $B \rightarrow A$.
- Directed H-cycle in $D_{2-in,2-out}$ links all intervals via Phase 2.

THEOREM (AJTAI, KOMLÓS, SZEMERÉDI; DE LA VEGA)

Let $p = \frac{\omega}{n}$, where $0 < \omega < \log n - 3 \log \log n$. Then $G_{n,p}$ has a path of length $(1 - \frac{1}{\omega})n$ whp.

・ロト・日本・モート・モー うらくで

Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let $p = \frac{\omega}{n}$, where $0 < \omega < \log n - 3 \log \log n$. Then $G_{n,p}$ has a path of length $(1 - \frac{1}{\omega})n$ whp.

To obtain intervals:

• Adapting proof of de la Vega, find rainbow path of length n - o(n) in Phase 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

• Break the long path into intervals of length $L = \frac{14}{\epsilon}$.

Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let $p = \frac{\omega}{n}$, where $0 < \omega < \log n - 3 \log \log n$. Then $G_{n,p}$ has a path of length $(1 - \frac{1}{\omega})n$ whp.

To obtain intervals:

- Adapting proof of de la Vega, find rainbow path of length n o(n) in Phase 1.
- Break the long path into intervals of length $L = \frac{14}{\epsilon}$.
- Absorb all missing vertices into system of intervals, using minimum degree two.

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon)\log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle **whp** when its edges are randomly colored from $\kappa = (1+\epsilon)n$ colors.

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon)\log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle **whp** when its edges are randomly colored from $\kappa = (1+\epsilon)n$ colors.

Edge-colored random graph process:

- Start with *n* isolated vertices.
- Each round, add a new edge, selected uniformly at random from all missing edges.
- Randomly color the new edge from a set C of size at least n.

For any fixed $\epsilon > 0$, if $p = \frac{(1+\epsilon)\log n}{n}$, then $G_{n,p}$ contains a rainbow Hamilton cycle **whp** when its edges are randomly colored from $\kappa = (1+\epsilon)n$ colors.

Edge-colored random graph process:

- Start with *n* isolated vertices.
- Each round, add a new edge, selected uniformly at random from all missing edges.
- Randomly color the new edge from a set C of size at least n.

QUESTION

Does a rainbow Hamilton cycle appear as soon as the minimum degree is at least two and at least n colors have arrived?