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Graphs

Definition

A cycle is Hamiltonian if it visits every vertex exactly once.

Definition

Erdős-Rényi Gn,p: edges appear independently with probability p.

(Komlós, Szemerédi; Bollobás) Gn,p is Hamiltonian whp if

p = log n+log log n+ω(n)
n with ω(n)→∞.

(Robinson, Wormald) G3-reg is Hamiltonian whp.

(Bohman, Frieze) G3-out is Hamiltonian whp.

(Cooper, Frieze) D2-in,2-out is Hamiltonian whp.
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Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Hypergraphs

Definition (3-uniform hypergraph)

Hn,p;3: each triple appears independently with probability p.

Tight H-cycle Loose H-cycle

(Frieze) Hn,p;3 has loose H-cycle whp if p > K log n
n2

, 4 | n.

(Dudek, Frieze) Asymptotically answered for all uniformities,
and all degrees of loose-ness.



Rainbow Hamilton cycles

Question

Does Gn,p have a rainbow Hamilton cycle if edges are randomly
colored from κ colors?

Observations

Must have p > log n+log log n+ω(n)
n with ω(n)→∞.

Must have κ ≥ n.

(Cooper, Frieze) True if p = 20 log n
n and κ = 20n.

(Janson, Wormald) True if G2r -reg is randomly colored with
each of κ = n colors appearing exactly r ≥ 4 times.
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Loose vs. rainbow H-cycles

Connect 3-uniform hypergraphs

(loose Hamiltonicity)

to colored graphs

(rainbow Hamilton cycles).

Hypergraph
(bisected vertex set)

Frieze applied Johansson-Kahn-Vu to find perfect matchings.

Apply Janson-Wormald to find rainbow H-cycle in randomly
colored random regular graph.
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Rainbow Hamilton cycles

Theorem (Frieze, L.)

For any fixed ε > 0, if p = (1+ε) log n
n , then Gn,p contains a rainbow

Hamilton cycle whp when its edges are randomly colored from
κ = (1 + ε)n colors.

Remarks:

Asymptotically best possible, both in terms of p and κ.

Still holds when ε tends (slowly) to zero.



Proof ideas
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If p = (1+ε) log n
n , then almost all vertices have degree ≥ 1

10 log n.
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By Chernoff, P
[
deg(v) < 1

10E
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Proof ideas

Observation

If p = (1+ε) log n
n , then almost all vertices have degree ≥ 1

10 log n.

First attempt to find rainbow H-cycle:

Suppose all degrees ≥ 1
10 log n.

At each vertex, expose list of colors that appear.

Select 3 colors per vertex s.t. all selected colors are different.

Expose those edges only; like G3-out.

Already requires 3n colors.
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Saving the constant factor

Sprinkling

Reserve p′ = ε
2 ·

log n
n and κ′ = εn

2 for 2nd phase.

Main lemma

Using only edges and colors from Phase 1, there is a partition into
rainbow intervals, such that:

A B A B A B A B A B

All intervals have length L = 14
ε .

Each A-vertex has ≥ ε2

40L log n B-neighbors in Phase 2.

Each B-vertex has ≥ ε2

40L log n A-neighbors in Phase 2.
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Final rainbow linking

Expose Phase 2 colors between A- and B-vertices.

Select 2 colors per vertex s.t. all selected colors are different.

Now only requires 2 · 2nL = 2
7εn colors, out of Phase 2’s εn

2 .

A B A B A B

Aux. digraph: vertices are intervals; edges oriented B → A.

Directed H-cycle in D2-in,2-out links all intervals via Phase 2. �
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Constructing intervals

Theorem (Ajtai, Komlós, Szemerédi; de la Vega)

Let p = ω
n , where 0 < ω < log n − 3 log log n. Then Gn,p has a

path of length
(
1− 1

ω

)
n whp.

To obtain intervals:

Adapting proof of de la Vega, find rainbow path of length
n − o(n) in Phase 1.

Break the long path into intervals of length L = 14
ε .

Absorb all missing vertices into system of intervals, using
minimum degree two. �
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Conclusion

Theorem (Frieze, L.)

For any fixed ε > 0, if p = (1+ε) log n
n , then Gn,p contains a rainbow

Hamilton cycle whp when its edges are randomly colored from
κ = (1 + ε)n colors.

Edge-colored random graph process:

Start with n isolated vertices.

Each round, add a new edge, selected uniformly at random
from all missing edges.

Randomly color the new edge from a set C of size at least n.

Question

Does a rainbow Hamilton cycle appear as soon as the minimum
degree is at least two and at least n colors have arrived?
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