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Problems (Day 1)

1. Determine all functions f : R → R such that the equality

f (�x�y) = f (x)� f (y)�
holds for all x, y ∈ R. (Here �z� denotes the greatest integer less than or equal to z.)

2. Let I be the incentre of triangle ABC and let � be its circumcircle. Let the line AI
intersect � again at D. Let E be a point on the arc B̂DC and F a point on the side BC
such that

� BAF = � CAE < 1
2
� BAC.

Finally, let G be the midpoint of the segment IF. Prove that the lines DG and EI intersect
on �.

3. Let N be the set of positive integers. Determine all functions g : N → N such that
(
g(m) + n

)(
m + g(n)

)

is a perfect square for all m, n ∈ N.

Problems (Day 2)

4. Let P be a point inside triangle ABC. The lines AP, BP, and CP intersect the circum-
circle � of triangle ABC again at the points K , L , and M , respectively. The tangent to
� at C intersects the line AB at S. Suppose that SC = SP. Prove that MK = ML.

5. In each of six boxes B1, B2, B3, B4, B5, B6 there is initially one coin. There are two
types of operation allowed:

Type 1: Choose a nonempty box B j with 1 ≤ j ≤ 5. Remove one coin from B j and
add two coins to B j+1.

Type 2: Choose a nonempty box Bk with 1 ≤ k ≤ 4. Remove one coin from Bk and
exchange the contents of (possibly empty) boxes Bk+1 and Bk+2.

Determine whether there is a finite sequence of such operations that results in boxes B1,
B2, B3, B4, B5 being empty and box B6 containing exactly 201020102010

coins. (Note that
abc = a(bc).)
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6. Let a1, a2, a3, . . . be a sequence of positive real numbers. Suppose that for some posi-
tive integer s, we have

an = max{ak + an−k | 1 ≤ k ≤ n − 1}
for all n > s. Prove that there exist positive integers � and N , with � ≤ s and such that
an = a� + an−� for all n ≥ N .

Solutions

1. The answer is f (x) = c for all x , where c = 0 or 1 ≤ c < 2. To prove that these are the
only possible solutions, consider two cases. First suppose that � f (y)� = 0 whenever
0 ≤ y < 1. Then f (�x�y) = f (x)� f (y)� = 0 whenever 0 ≤ y < 1. Since every real
number can be represented as a product of the form �x�y with x ∈ R and 0 ≤ y < 1, in
this case f is identically zero.

Otherwise, suppose � f (y0)� �= 0 for some 0 ≤ y0 < 1. For any xn satisfying
n ≤ xn < n + 1, set y = y0 and x = xn in the given equality to obtain f (ny0) =
f (xn)� f (y0)�. Letting cn = f (ny0)� f (y0)� , it follows that f (xn) = cn for all xn ∈ [n, n+1).
In particular, we have �c0� = � f (y0)� �= 0, hence c0 �= 0. Now set x = y = 0 in the
given equality to obtain c0 = f (0) = f (0)� f (0)� = c0�c0�, hence �c0� = 1. Finally,
setting y = 0 and x = n in the given equality, we find cn = f (n) = f (0)

� f (0)� = c0�c0� = c0.
Therefore, in this case we have f (x) = c0 for all x , and �c0� = 1.

This problem was proposed by Pierre Bornsztein of France.

2. Let P be the second intersection of ray EI and �, and let segments PD and FI meet
at M . We wish to show that M = G, or, equivalently, FM = MI. Let Q be the inter-
section of segments PD and AF. Applying Menelaus’s theorem to triangle AFI and line
QMD gives FQ·AD·IM

QA·DI·MF = 1. Hence it suffices to show that FQ·AD
QA·DI = 1 or equivalently that

AD/AQ = (DI + DA)/FA.
Triangles QAD and IAE are similar, so AD/AQ = EA/AI. Also, triangles ABF and

AEC are similar, so we have AF/AB = AC/AE. Together these imply that AD
AQ = AB·AC

AF·AI .
Now, let H be the intersection of BC and AD; notice that triangles DHC and DCA
are similar, hence DC2 = DH · DA. Now because � DCI = � CID, we have DC = DI,
hence DA2 − DI2 = DA2 − DC2 = DA2 − DH · DA = DA · HA. On the other hand,
notice that triangles ABH and ADC are similar, so DA · HA = AB · AC. Putting these
together, we see that AD

AQ = AB·AC
AF·AI = DA·HA

AF·AI = DI+DA
FA , as needed.

This problem was proposed by Wai Ming Tai of Hong Kong and Chongli Wang of
China.

3. All functions of the form g(n) = n + c for a constant nonnegative integer c satisfy the
problem conditions. We claim that these are the only such functions.

We first show that g must be injective. Suppose instead that g(a) = g(b) for some
a �= b. Choose n so that n + g(a) = p is prime and greater than |a − b|. From the
hypothesis both p(g(n) + a) and p(g(n) + b) must be perfect squares, meaning that
g(n) + a and g(n) + b are both divisible by p. But this is impossible, as p > |a − b|.
Therefore, g is injective as claimed.

We now show that |g(k + 1) − g(k)| = 1 for all k. Suppose instead that some prime
p divides g(k + 1) − g(k). Now, choose an integer n as follows. If p2 | g(k + 1) −
g(k), then take n so that n + g(k + 1) is divisible by p but not p2. Otherwise, take
n so that n + g(k + 1) is divisible by p3 but not p4. Note that the maximum power
of p dividing n + g(k + 1) and n + g(k) is odd. Now, the hypothesis implies that
(n + g(k + 1))(g(n) + k + 1) and (n + g(k))(g(n) + k) are both squares, meaning that
g(n) + k + 1 and g(n) + k are both divisible by p, a contradiction.

For each k, we now have either g(k + 1) = g(k) + 1 or g(k + 1) = g(k) − 1. But g
is injective, so if the latter occurs for some k, then it occurs for all k ′ > k, an impossi-
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bility because g takes positive values. Therefore, we have g(k + 1) = g(k) + 1 for all
k, hence g(k) = k + g(1) − 1.

This problem was proposed by Gabriel Carroll of the USA.

4. Without loss of generality, we may assume that S is on ray BA. Set x1 = � PAB,
y1 = � PBC, z1 = � PCA, x2 = � PAC, y2 = � PBA, and z2 = � PCB. Because SC
is tangent to �, we have SC2 = SA · SB by the Power of a Point Theorem, and
� SCP = � SCM = � ACM + � ACS = z1 + � ABC = z1 + y1 + y2. Because SP = SC,
we have SP2 = SC2 = SA · SB, so triangles SAP and SPB are similar. It follows that
� SPA = � SBP = y2 and that � ASP = � BAP − � SPA = x1 − y2. Now, SP = SC im-
plies � SPC = � SCP = z1 + y1 + y2, so � PSC = 180◦ − 2(z1 + y1 + y2) = x1 + x2 +
z2 − (z1 + y1 + y2). Notice that � ASC = � BAC − � ACS = (x1 + x2) − (y1 + y2),
so we have � ASP = � ASC − � PSC = z1 − z2. Combining our two computations of
� ASP yields x1 − y2 = z1 − z2 or x1 + z2 = y2 + z1. That is, we have (K̂B + B̂M)/2 =
(L̂A + ÂM)/2, hence K̂M/2 = L̂M/2 and MK = ML.

This problem was proposed by Marcin E. Kuczma of Poland.

5. The answer is yes. Although the problem specifies that the number of boxes is n = 6,
the operations extend in the obvious way to general values of n. Our proof will consider
several different values of n on the way to the final result. For this, it is convenient to let
(b1, . . . , bn) denote the n-box configuration where b1 balls are in box B1, b2 balls are
in box B2, etc. Write (b1, . . . , bn) → (b′

1, . . . , b′
n) if we can obtain the configuration

(b′
1, . . . , b′

n) from (b1, . . . , bn) following the rules in the n-box setting. We begin with
two lemmas.

LEMMA 1. Let a be a positive integer. Then (a, 0, 0) → (0, 2a, 0).

Proof. We will show that (a, 0, 0) → (a − k, 2k, 0) for every 1 ≤ k ≤ a, by induct-
ing on k. For k = 1, applying a Type 1 operation to the first number gives (a, 0, 0) →
(a − 1, 2, 0) = (a − 1, 21, 0). Now assume the statement holds for some k < a. Start-
ing from (a − k, 2k, 0), repeatedly applying 2k many Type 1 operations at the middle
box yields (a − k, 2k, 0) → · · · → (a − k, 0, 2k+1). A final Type 2 operation applied
at the first box produces (a − k, 0, 2k+1) → (a − k − 1, 2k+1, 0), completing the in-
duction.

LEMMA 2. Define Pn = 22..
.2

︸︷︷︸
n

. Then (a, 0, 0, 0) → (0, Pa, 0, 0) for every positive

integer a.

Proof. We will show that (a, 0, 0, 0) → (a − k, Pk, 0, 0) for 1 ≤ k ≤ a, by induct-
ing on k. For k = 1, a Type 1 operation applied at the first box gives (a, 0, 0, 0) →
(a − 1, P1, 0, 0). Now assume that (a, 0, 0, 0) → (a − k, Pk, 0, 0) for some a < k.
Applying Lemma 1 to the last three boxes, we obtain (a − k, Pk, 0, 0) → (a − k, 0,

Pk+1, 0). A final Type 2 operation applied at the first box gives (a − k, 0, Pk+1, 0) →
(a − k − 1, Pk+1, 0, 0), completing our induction.

We now describe the construction for the original 6-box setting. Write A =
201020102010

. First, apply a Type 1 operation to B5, giving (1, 1, 1, 1, 1, 1) → (1, 1, 1,

1, 0, 3). Second, apply Type 2 operations to B4, B3, B2, and B1 in this order, ob-
taining (1, 1, 1, 1, 0, 3) → (1, 1, 1, 0, 3, 0) → (1, 1, 0, 3, 0, 0) → (1, 0, 3, 0, 0, 0) →
(0, 3, 0, 0, 0, 0). Third, apply Lemma 2 twice, giving the sequence (0, 3, 0, 0, 0, 0) →
(0, 0, P3, 0, 0, 0) → (0, 0, 0, P16, 0, 0). It is easy to check that P16 > A, so there are
more than A = 201020102010

coins in B4 at this point. Fourth, decrease the number of
coins in B4 by applying Type 2 operations repeatedly to B4 until its size decreases
to A

4 . This gives (0, 0, 0, P16, 0, 0) → · · · → (
0, 0, 0, A

4 , 0, 0
)
. Finally, apply Type 1
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operations repeatedly to first empty B4 and then B5, obtaining
(
0, 0, 0, A

4 , 0, 0
) →

· · · → (
0, 0, 0, 0, A

2 , 0
) → · · · → (0, 0, 0, 0, 0, A), as desired.

This problem was proposed by Hans Zantema of Netherlands.
Note. Following a practice established last year, Fields Medalist (and IMO gold

medalist) Terence Tao hosted an online project for others to collaborate in solving
this problem, which he identified as the most challenging problem on the exam (http:
//polymathprojects.org/2010/07/08/minipolymath2-project-imo-2010-q5/).

6. We generalize to the setting where the an may assume negative values. For any r ∈ R,
note that the transformation an �→ an + rn does not change the problem conditions or
the result to be proved. Picking � ≤ s such that a�/� is maximal, we can thus assume
without loss of generality that a� = 0. This means all of a1, . . . , as are non-positive,
hence all an are non-positive. Let bn = −an ≥ 0. For n > s, we have bn = min{bk +
bn−k | 1 ≤ k ≤ n − 1} and in particular bn ≤ bn−� + b� = bn−�.

From this, we draw two conclusions. First, all bn must be bounded above by M =
max{b1, . . . , bs}. Second, if we let S be the set of all linear combinations of the form
c1b1 + c2b2 + · · · csbs , where the ci are nonnegative integers, and let T = {x ≤ M :
x ∈ S}, then since bn = min{bk + bn−k | 1 ≤ k ≤ n − 1}, it is clear that every bn must
be in T . Crucially, T is a finite set.

Now, for each integer i satisfying �i + 1 > s, let βi denote the �-tuple (b�i+1,

b�i+2, . . . , b�i+�). By the previous paragraph, the number of such �-tuples is at most
|T |�, a finite number. Further, because bn ≤ bn−� for n > s, the individual indices of
these βi are non-increasing functions of i . Thus, there can only be finitely many i for
which βi �= βi+1. Let i0 be greater than the largest such value; then, all �-tuples βi with
i ≥ i0 are identical. Choosing N = �(i0 + 1) finishes the problem, since any n ≥ N
gives bn = bn−� = b� + bn−�.

This problem was proposed by Morteza Saghafian of Iran. This solution is by Evan
O’Dorney.

Results. The IMO was held in Astana, Kazakhstan, on July 7–8, 2010. There were 517
competitors from 96 countries and regions. On each day contestants were given four and a
half hours for three problems.

On this challenging exam, a perfect score was achieved by only one student, Zipei Nie
(China). The USA team ranked third, behind China and Russia. Although the American
team has consistently finished in the top ten at the IMO, this year’s performance was par-
ticularly impressive because none of the team members were in their final year of high
school. The students’ individual results were as follows.

• Calvin Deng, who finished 9th grade at William G. Enloe High School in Raleigh, NC,
won a silver medal.

• Ben Gunby, who finished 10th grade at Georgetown Day School in Washington, DC,
won a gold medal.

• Xiaoyu He, who finished 10th grade at Acton-Boxborough Regional High School in
Acton, MA, won a gold medal.

• In-Sung Na, who finished 11th grade at Northern Valley Regional High School in Old
Tappan, NJ, won a silver medal.

• Evan O’Dorney from Danville, CA, who finished 11th grade (homeschooled through
Venture School), won a gold medal. Furthermore, he placed 2nd overall with a score of
39/42. For his spectacular performance, he received a private congratulatory telephone
call from the President of the United States, Barack Obama.

• Allen Yuan, who finished 11th grade at Detroit Country Day School in Beverly Hills,
MI, won a silver medal.

http://polymathprojects.org/2010/07/08/minipolymath2-project-imo-2010-q5/
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