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Setting (Nowakowski, Winkler)

Question

How many cops are required to catch a single robber on a given
connected graph G , with perfect information?

Rules

1 Cops choose starting positions first.

2 Then Robber chooses starting position.

3 Each cop either moves by 1 edge, or stays put.

4 Robber either moves by 1 edge, or stays put.

5 Repeat steps 3 and 4.

Cops win when a cop occupies the same vertex as Robber.

Remark: It is possible for Robber to win, e.g., if G is a cycle on 4
or more vertices and there is only 1 cop.
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Cop number

Definition

The cop number of a graph c(G ) is the minimum number of cops
required to win against any robber strategy.

Theorem (Aigner, Fromme 1984)

The cop number of any planar graph is at most 3.

Lemma

If P is a shortest path between some a, b ∈ G , then one cop is
sufficient to keep Robber off P.

Proof idea. Cop maintains invariant: for every vertex v ∈ P, he is
closer to v than Robber is. (Possible since P is a shortest path.) �
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General graphs: lower bound

Projective plane graph

There are C4-free bipartite graphs with all degrees Θ(
√

n).

Corollary

The cop number of a general graph can be as large as Ω(
√

n).

Proof.

Let G be a projective plane graph.

Suppose there are fewer than δ(G ) cops.

Robber stays put, unless a cop
moves to an adjacent vertex.

Since no C3 or C4, total number of robber’s neighbors
dominated/occupied by cops is < δ, so robber can escape. �



General graphs: lower bound

Projective plane graph

There are C4-free bipartite graphs with all degrees Θ(
√

n).

Corollary

The cop number of a general graph can be as large as Ω(
√

n).

Proof.

Let G be a projective plane graph.

Suppose there are fewer than δ(G ) cops.

Robber stays put, unless a cop
moves to an adjacent vertex.

Since no C3 or C4, total number of robber’s neighbors
dominated/occupied by cops is < δ, so robber can escape. �



General graphs: lower bound

Projective plane graph

There are C4-free bipartite graphs with all degrees Θ(
√

n).

Corollary

The cop number of a general graph can be as large as Ω(
√

n).

Proof.

Let G be a projective plane graph.

Suppose there are fewer than δ(G ) cops.

Robber stays put, unless a cop
moves to an adjacent vertex.

Since no C3 or C4, total number of robber’s neighbors
dominated/occupied by cops is < δ, so robber can escape. �



General graphs: upper bound

Meyniel’s Conjecture

The cop number of every n-vertex graph is O(
√

n).

Upper bounds

Frankl (1987): n
log n · log log n

Chiniforooshan (2008): n
log n

Lu-Peng, Scott-Sudakov: n/2
√

log2 n.
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Proof sketch. To guard the graph with n
t + tt cops:

If there is vertex of degree ≥ t, put one cop there and
eliminate it and its neighborhood from the graph.

Repeat until all degrees ≤ t.

Repeat shortest path lemma until diameter ≤ t.

Only tt vertices remain; put one cop on each. �
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Variations

On Gn,p: Bollobás-Kun-Leader,  Luczak-Pra lat.

Ranged weapons: Bollobás-Chiniforooshan-Pra lat.

Limited visibility: Isler-Kannan-Khanna.

Faster cop.
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Faster robber

Theorem (FGKNS, 2010)

If the robber can traverse up to 2 edges per move, then Ω(
√

log n)
cops are required to catch the robber on the n × n grid.

Questions

Suppose the robber can travel R ≥ 2 edges per move.

Are there graphs which require more than
√

n cops?

Can one prove an o(n) upper bound?

Remarks.

Projective plane graphs were used for the old lower bound,
but these are hard to analyze for fast robber strategies.

Previous upper bound arguments used diameter lemma, which
does not apply for fast robber.
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Results

Theorem 1 (Frieze, Krivelevich, L.)

Let R be the robber’s speed. There exist n-vertex graphs which:

require n1− 1
R−2 cops to catch the robber, if 3 ≤ R ≤ ∞;

require n
8002 cops to catch the robber, if R =∞.

Theorem 2 (Frieze, Krivelevich, L.)

For any R ≥ 1 and any connected graph G on n vertices,

n/α
√

logα n cops are sufficient to catch any speed-R robber, where
α = 1 + 1

R .

This smoothly extends the best upper bound to fast robbers.
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New ingredient

Earlier: if cannot guard G efficiently, then deduce structure:

Degrees are not too large.

Diameter is not too large.

Definition

A graph G is a c-expander if every set S of at
most half the vertices has |N(S) \ S | ≥ c |S |.

Observation

If G needs many cops, then G is an expander.

Justification:

If set S does not expand, station cops on |N(S) \ S | < c |S |.
The robber can never pass this barrier, so the problem reduces
to either S or G \ (N(S) ∪ S).

Cost in cops is only c-fraction of vertices removed.
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Benefits of expansion

To show pn cops suffice:

May assume all degrees ≤ 1
p .

May assume all sets expand by factor ≥ (1 + 1
p ).

Randomly place cops at every vertex with probability p.

Choose T so that (1 + 1
p )T = 1

p .

Hall’s Theorem: every vertex within distance RT from robber
has distinct cop within distance T from it.

Catch robber in T rounds.

Works as long as
(

1
p

)RT � n. �
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Lower bound

Robber strategy on Gn,p

Let C be vertices occupied by cops.

Let C+ be C , together with neighboring vertices.

Robber stays in np
3 -core of G \ C+.

Proof. For np = nc , show speed- 1
c robber can elude n1−c cops.

In Gn,p, any H = G \ C+ has np
3 -core of size 0.99n.

Say robber is in core, and cops move.

Let C ′ be new cop positions.

Since C ′ ⊂ C+, robber can
still move within H.

New core also has size 0.99n, so it overlaps old core.

By properties of Gn,p, robber can reach new core fast. �
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Final comments

Remarks.

Our lower bound robber strategy is (necessarily) more
complex, so we use Gn,p instead of the projective plane.

Our upper bound matches the first-order constants of Lu-Peng
and Scott-Sudakov, using expansion instead of diameter.

Open problems.

Are ω(
√

n) cops required to catch a speed-2 robber?
Our bound only exceeds

√
n for R ≥ 5.

What if cops and robber move at the same speed R ≥ 2?
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