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ABSTRACT: For a fixed integer r, consider the following random process. At each round, one is
presented with r random edges from the edge set of the complete graph on n vertices, and is asked to
choose one of them. The selected edges are collected into a graph, which thus grows at the rate of one
edge per round. This is a natural generalization of what is known in the literature as an Achlioptas
process (the original version has r = 2), which has been studied by many researchers, mainly in the
context of delaying or accelerating the appearance of the giant component.

In this article, we investigate the small subgraph problem for Achlioptas processes. That is, given
a fixed graph H, we study whether there is an online algorithm that substantially delays or accelerates
a typical appearance of H , compared to its threshold of appearance in the random graph G(n, M). It
is easy to see that one cannot accelerate the appearance of any fixed graph by more than the constant
factor r, so we concentrate on the task of avoiding H. We determine thresholds for the avoidance of all
cycles Ct , cliques Kt , and complete bipartite graphs Kt,t , in every Achlioptas process with parameter
r ≥ 2. © 2008 Wiley Periodicals, Inc. Random Struct. Alg., 34, 165–195, 2009
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1. INTRODUCTION

The standard Erdős-Rényi random graph model G(n, M) can be described as follows. Start
with the empty graph on n vertices, and perform M rounds, adding one random edge to the
graph at each round. For any monotone increasing graph property (such as containment of
K4 as a subgraph, say), it is natural to ask whether there is some value of M at which the
probability of G(n, M) satisfying the property changes rapidly from nearly 0 to nearly 1.
More precisely, a function M∗(n) is said to be a threshold for a property P if for any M(n) �
M∗(n), the random graph G(n, M) does not satisfy P whp, but for any M(n) � M∗(n), the
random graph G(n, M) satisfies P whp. Here, whp stands for “with high probability,” that
is, with probability tending to 1 as n → ∞, and f (n) � g(n) means that f (n)/g(n) → 0
as n → ∞. A classical result of Bollobás and Thomason [10] implies that every monotone
graph property has a threshold, and much work has been done to determine thresholds for
various properties.

Recently, there was much interest in the following natural variant of the classical model.
We still begin with the empty graph and perform a series of rounds, but at each round,
one is now presented with two independent and uniformly random edges, and is asked to
choose one of them to add to the graph. This is known in the literature as an Achlioptas
process, after Dimitris Achlioptas, who asked the question of whether there was an online
algorithm which could, with high probability, substantially delay the appearance of the giant
component (a connected component with �(n) vertices).

The trivial algorithm, which arbitrarily chooses the first edge in each offered pair,
essentially produces the random graph G(n, M) after M rounds, so G(n, M) serves as the
benchmark against which comparisons are made. A classical result of Erdős and Rényi
[11] states that if M = cn for any absolute constant c > 1/2, then the random graph
G(n, M) contains a giant component whp. For the Achlioptas process, Bohman and Frieze
[4] presented an algorithm which could run for 0.535n rounds, while keeping the size of the
largest component only poly-logarithmic in n whp. Since then, much work has been done
[2, 3, 5–7, 13, 16]. The current best result for this problem is due to Spencer and Wormald
[16], who exhibit an algorithm that can run for 0.829n rounds while keeping all component
sizes bounded by O(log n) whp. In the opposite direction, Bohman, Frieze, and Wormald
[5] have shown that no algorithm can succeed whp past 0.964n rounds. Several variants
have also been studied, such as the offline version, a two-player version, and the question
of embracing (accelerating the appearance of) the giant component.

While the main focus of the research mentioned above was the giant component, it
is natural to study other graph properties in the context of Achlioptas processes. In this
article, we study the problem which in the literature is referred to as the small subgraph
problem. This was one of the main problems studied in the seminal paper of Erdős and
Rényi [11] from 1960, which was the starting point of the theory of random graphs. The
original problem, stated for the random graph model G(n, M), was as follows: given a fixed
graph H (a triangle or K4, say), find the smallest value of M such that the random graph
G(n, M) contains H as a (not necessarily induced) subgraph whp. The subgraph is called
“small” because its size is fixed while n tends to infinity.

It turns out that in this problem, the relevant parameter is the maximum edge den-
sity m(G) = max{e(H)/v(H) : H is a subgraph of G}. In their original paper, Erdős and
Rényi found thresholds for all balanced graphs, which are the graphs whose edge density
e(H)/v(H) equals the maximum edge density m(H). It was not until 20 years later that
Bollobás [9] solved the problem for all graphs, proving that for any H with m(H) ≥ 1,
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the threshold for H appearing in G(n, M) is M∗ = n2− 1
m(H) . For further reading about the

small subgraph problem in G(n, M), we direct the interested reader to the monographs by
Bollobás [8] and by Janson, Łuczak, and Ruciński [14], each of which contains an entire
section discussing this problem.

In this article, we consider the small subgraph problem in the context of Achlioptas
processes, and investigate whether one can substantially affect thresholds by introducing
this power of choice. Actually, we study a natural generalization of the process, which we
call an Achlioptas process with parameter r. In this process, r edges of Kn are presented at
each round, and one of them is selected. We will always consider r to be fixed as n tends to
infinity (note that r = 2 corresponds to the original Achlioptas process).

Let us now state our model precisely. At the i-th round, one is presented with r indepen-
dent random edges, each distributed uniformly over all

(n
2

) − (i − 1) remaining edges that
have not yet been chosen for the graph. Note that this eliminates the possibility of choosing
the same edge twice, so our final graph is simple. However, we do allow the possibility that
edges may be offered more than once, which simplifies our arguments. One may consider
models in which all sampling is with replacement (which may create multigraphs), or in
which every edge is offered at most once, but our results in this article will still carry over
because we always run the process for o(n2) rounds.

Note that the graph after the k-th round of the Achlioptas process with parameter r is a
subgraph of the random graph with rk edges. So, the question of accelerating the appearance
of a fixed graph is immediately resolved in the negative. Clearly, the threshold cannot move
forward by more than a (constant) factor of r.

So, in this article we concentrate on the avoidance problem. We may pose it as a single
player game in which the player loses when he creates a (not necessarily induced) subgraph
isomorphic to a certain fixed graph H. The player’s objective is to postpone losing for as
long as possible. We say that a function m∗(n) is a threshold for avoiding H if: (i) given
any function m(n) � m∗(n), there exists an online strategy by which the player survives
through m rounds whp, and (ii) given any function m(n) � m∗(n), the player loses by the
end of m rounds whp, regardless of the choice of such a strategy.

Note, however, that it is not obvious that thresholds necessarily exist. Furthermore, unlike
the situation in the small subgraph problem, there are no simple first-moment calculations
that suggest what the thresholds should be. As it turned out, a substantial part of the difficulty
in obtaining our results was in conjecturing the correct thresholds. We were able to solve
the problem for all cycles Ct , cliques Kt , and complete bipartite graphs Kt,t . Let us now state
our main result:

Theorem 1.1.

(i) For t ≥ 3, the threshold for avoiding Ct in the Achlioptas process with parameter

r ≥ 2 is n2− (t−2)r+2
(t−1)r+1 .

(ii) For t ≥ 4, the threshold for avoiding Kt in the Achlioptas process with parameter
r ≥ 2 is n2−θ , where θ is defined as follows:

s = �logr[(r − 1)t + 1]�, θ = rs(t − 2) + 2

rs
[( t

2

) − s
] + rs−1

r−1

.

(iii) For t ≥ 3, the threshold for avoiding Kt,t in the Achlioptas process with parameter
r ≥ 2 is n2−θ , where θ is defined as follows:

s = �logr[(r − 1)t + 1]�, θ = rs(2t − 2) + 2

rs(t2 − s) + rs−1
r−1

.
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Remark. In all of these cases, we provide deterministic online algorithms that achieve
the thresholds whp, but show that even randomized algorithms cannot survive beyond the
thresholds.

The rest of this article is organized as follows. In the next section, we present some tools
from extremal combinatorics and the theory of random graphs, which we will use in our
proofs. Then, we present the proof of our theorem, which is divided into several sections.
We begin in Section 3 with the case of avoiding K4 when r = 2, which turns out to be the
first nontrivial case. We treat this case in detail, because our argument there is the prototype
for the general argument that we later use to prove thresholds for Kt , Kt,t , and Ct .

We extend the argument to almost all other Kt and r in Section 4. The proof requires many
inequalities whose somewhat tedious verifications would interfere with the exposition, so
their precise statements are recorded in the appendix.1 This also makes it easier to distill the
abstract argument, which we present in Section 5. Next, we apply the abstraction to prove
thresholds for avoiding Ct in Section 6 and Kt,t in Section 7. We treat the last remaining case
of avoiding K4 in the Achlioptas process with parameter 3 in Section 8. The final section
contains some concluding remarks and open problems.

2. PRELIMINARIES

2.1. Notation and Terminology

Throughout our paper, we will omit floor and ceiling signs whenever they are not essential,
to improve clarity of presentation. The following (standard) asymptotic notation will be
utilized extensively. For two functions f (n) and g(n), we write f (n) = o(g(n)) or g(n) =
ω(f (n)) if limn→∞ f (n)/g(n) = 0, and f (n) = O(g(n)) or g(n) = �(f (n)) if there exists
a constant M such that |f (n)| ≤ M|g(n)| for all sufficiently large n. We also write f (n) =
�(g(n)) if both f (n) = O(g(n)) and f (n) = �(g(n)) are satisfied.

Let us introduce the following abbreviations for some phrases that we will use many times
in our proof. As mentioned in the introduction, whp will stand for “with high probability,”
i.e., with probability 1−o(1). It is also convenient for us to introduce the abbreviation wep,
which stands for “with exponential probability,” i.e., with probability 1 − o(e−nc

) for some
c > 0. We will say that a function f is a positive power of n if f = �(nc) for some c > 0.
Analogously, we will say that a function f is a negative power of n if f = O(n−c) for some
c > 0.

Next, let us discuss the graph-specific terms that we will use. We often need to consider
the graphs at intermediate stages of the Achlioptas process, so Gi will always denote the
graph after the i-th round. Our main interest in Gi will be to count copies of subgraphs. Here,
we define a copy of a graph H in another graph G to be an injective map from V(H) to V(G)

that preserves the edges of H. Note that copies are not necessarily induced subgraphs, and
are labeled, i.e., we do not take automorphisms into account when computing the number
of copies of H in a graph.

The player’s objective in the Achlioptas process is to avoid creating a copy of a certain
fixed graph H, but our analysis needs to consider subgraphs of H as well. It is therefore

1The proofs of these inequalities are rather technical and not so interesting, so they only appear in the unabridged
version of this paper which is on the arXiv at http://arxiv.org/abs/0708.0443.
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convenient to introduce the notation H \ ke to represent any graph which can be obtained
by deleting any k edges from H. (When k = 1, we will simply write H \ e.) This enables us
to concisely refer to all graphs of the form H \ ke in the aggregate. For example, the phrase
“the number of copies of H \ ke” should be understood to be the total number of copies of
all graphs of the form H \ ke.

We keep track of the number of copies of these subgraphs by studying how counts
are affected by the addition of an edge at a pair of vertices. This motivates the following
definition. Let G and H be graphs, let k be an integer, and let a, b be a pair of distinct vertices
of G. Let G+ be the graph obtained from G by adding the edge between a and b if it is not
yet present, and let G− be the graph obtained by deleting that edge if it was present. Note
that G is equal to either G+ or G−. Then, we say that the pair {a, b} completes t copies of
H \ ke if t is the difference between the number of copies of H \ ke in G+ and the number
in G−.

Sometimes, we need to be specific about which graphs of the form H \ (k + 1)e are
completed into graphs of the form H \ ke. Let H1 and H2 be graphs on the same vertex
set U, with E(H1) ⊂ E(H2), but differing only in exactly one edge. Let {u, v} ⊂ U be the
endpoints of that edge. Let G be another graph, and let a, b be a pair of distinct vertices of G.
Then, we say that the pair {a, b} extends t copies of H1 into H2 if t is the number of injective
graph homomorphisms φ : H1 → G that map {u, v} to {a, b}. Note that this definition is
insensitive to the presence of an edge between a and b.

2.2. Extremal Combinatorics

In this section, we present two extremal results, which are used in the proofs of the upper
bounds in our thresholds (i.e., that no strategy can survive for too many rounds). The
following lower bound on the number of paths in a graph was obtained in [12] using a
matrix inequality of Blackley and Roy.

Lemma 2.1. Every graph with n vertices and average degree d contains at least (1 +
o(1))ndt−1 copies of the t-vertex path Pt. Here, we consider t to be fixed, while d and n tend
to infinity.

Next, we record the following well-known extremal result, which lower bounds the
number of copies of the complete bipartite graph Ks,t that can appear in any graph with a
fixed number of edges. The classical proof (via two applications of convexity) is based on
the ideas used by Kövári, Sós, and Turán [15] to bound the Turán number ex(n, Ks,t).

Lemma 2.2. For fixed positive integers s ≤ t, and any function p � n−1/s, every graph
with n vertices and

(n
2

)
p edges contains at least (1 + o(1))ns+tpst copies of the complete

bipartite graph Ks,t .

2.3. Random Graphs

We begin by recalling the Chernoff bound for exponential concentration of a binomial
random variable. We use the formulation from [1].

Theorem 2.3. For any ε > 0, there exists cε > 0 such that the following holds. Let X be
any binomial random variable, and let µ be its expectation. Then P[|X−µ| > εµ] < 2e−cεµ.

Random Structures and Algorithms DOI 10.1002/rsa
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Using the Chernoff bound and a standard coupling argument, we prove a result that
allows us to relate Gm (the graph after the m-th round of the Achlioptas process) to the more
familiar random graph G(n, p).

Lemma 2.4. Suppose that n � m � n2. Then we may couple the Achlioptas process
with G(n, p = 4rm/n2) in such a way that wep, Gm is a subgraph of G(n, p).

Proof. In the Achlioptas process, r random edges are presented at each round, indepen-
dently and uniformly distributed over all potential edges that have not yet been picked for
the graph. So, we may couple the first m rounds of the process with the edge-uniform ran-
dom graph G(n, rm) in such a way that if we consider the graph G+

m obtained by taking
every edge that was offered (instead of choosing only one per round), G+

m is always a sub-
graph of G(n, rm). Yet Gm is always a subgraph of G+

m , so it remains to relate G(n, rm) with
G(n, p = 4rm/n2). This final part is standard and proceeds via coupling with the random
graph process; under this coupling, G(n, rm) ⊂ G(n, p) as long as Bin[(n

2

)
, p] ≥ rm, and

the Chernoff bound shows that this event occurs wep.

Our analysis revolves around counting copies of fixed subgraphs in Gm. The previous
lemma allows us to apply results from the theory of G(n, p) to assist us in this pursuit. We
now record several such theorems, translated in terms of Gm. The following definition is
crucial for counting subgraphs in G(n, p).

Definition 2.5. A graph H is balanced if for any subgraph H ′ ⊂ H, e(H ′)
v(H ′) ≤ e(H)

v(H)
.

Theorem 2.6. Let H be a fixed balanced graph with v vertices and e edges. Suppose that
n � m � n2, and let p = 2m/n2. Also suppose that nvpe is a positive power of n. Then the
number of copies of H in Gm is O(nvpe) wep.

Proof. By Lemma 2.4, it suffices to count copies of H in G(n, 2rp). The expected number
of copies is (1 + o(1))nv(2rp)e = �(nvpe), which is a positive power of n by assumption.
This allows us to apply Corollary 6.3 of [17], which uses Kim-Vu polynomial concentration
to prove the following result: for any balanced graph H such that the expected number of
copies of H in the random graph is µ � log n, the probability that the actual number of
copies exceeds 2µ is e−�(µ). In our case, µ is a positive power of n, so this implies that wep,
the number of copies is O(nvpe), as desired.

The previous result provides a very precise count of the number of copies of a fixed
graph in the random graph G(n, p). However, the point of the Achlioptas process was to
deviate from G(n, p) by introducing the power of choice. So, our analysis will have to take
the potential of choice into account. We keep track of the number of copies of subgraphs
by studying how counts are affected by the addition of an edge at a pair of vertices; this
motivated the notions of a pair completing t copies of H \ ke and of the pair extending t
copies of H1 into H2, which we defined at the end of Section 2.1.

This is essentially the problem of counting extensions, which has also been well-studied
in G(n, p). We refer the interested reader to Chapter 10 of [1]. As in the case of counting
subgraphs in G(n, p), a suitable definition of balanced-ness is required to count extensions.

Definition 2.7.

(i) Let H1 and H2 be graphs on the same vertex set U, with E(H1) ⊂ E(H2), but differing
only on the edge joining the vertices u, v ∈ U. We say that the pair (H1, H2) is a

Random Structures and Algorithms DOI 10.1002/rsa
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balanced extension pair if for every proper subset U ′ ⊂ U that still contains {u, v},
the induced subgraph H ′ = H1[U ′] has the property that e(H ′)

v(H ′)−2 ≤ e(H1)

v(H1)−2 .
(ii) H \ ke has the balanced extension property if every pair (H1, H2) with V(H1) =

V(H2) = V(H), E(H1) ⊂ E(H2) ⊂ E(H), e(H1) = e(H) − k, and e(H2) =
e(H) − k + 1, is a balanced extension pair.

Theorem 2.8. Suppose that n � m � n2, and let p = 2m/n2. Let (H1, H2) be a balanced
extension pair, and let v and e be the numbers of vertices and edges in H1, respectively.
Finally, let j be an arbitrary integer constant.

(i) Suppose that nv−2pe is a positive power of n. Then wep, every pair of distinct vertices
{a, b} of Gjm extends O(nv−2pe) copies of H1 into H2.

(ii) Suppose that nv−2pe is a negative power of n. Then, for any constant γ > 0, there
exists a constant C such that with probability 1 − o(n−γ ), every pair of distinct
vertices {a, b} of Gjm extends at most C copies of H1 into H2.

Proof. By Lemma 2.4, it suffices to consider G(n, 2rjp) instead of Gjm in both parts of
the theorem. For part (i), the expected number of extensions at a pair in G(n, 2rjp) is
(1 + o(1))nv−2(2rjp)e = �(nv−2pe), which is a positive power of n by assumption. This
allows us to apply Corollary 6.7 of [17], which uses Kim-Vu polynomial concentration to
prove the following result: for any balanced extension pair (H1, H2) such that the expected
number µ of copies of H1 that a fixed edge extends into H2 in the random graph is a positive
power of n, the probability that the actual number of extensions exceeds 2µ is e−�(µ). In
our case, µ is a positive power of n, so even after taking a union bound over all O(n2) pairs
of vertices, this implies that wep, every pair of vertices extends O(nv−2pe) copies of H1 into
H2. This establishes (i).

For part (ii), let us bound the probability that {a, b} extends C copies of H1 into H2.
Recall that H1 and H2 shared the same vertex set U, and differed only on the edge joining
u, v ∈ U. Consider any graph F which is formed by the superposition of C distinct copies
of H1, all with {u, v} mapping to the same pair of vertices {u′, v′} ∈ V(F). Let v′ = v(F)

and e′ = e(F).
The probability that {a, b} has an extension to F (an injective map from V(F) sending

{u′, v′} 
→ {a, b}) in G(n, 2rjp) is at most nv′−2(2rjp)e′ = O((npe′/(v′−2))v′−2). An easy and
standard induction, using the fact that (H1, H2) is a balanced extension pair, implies that

e′
v′−2 ≥ e

v−2 . Hence this probability is at most O((npe/(v−2))v′−2) = O((nv−2pe)
v′−2
v−2 ).

We assumed that nv−2pe was a negative power of n. Also, since the C copies of H1 in F

are distinct, one can trivially bound C ≤ (v′ −2)v−2 ⇒ v′ −2 ≥ C
1

v−2 . So, for a sufficiently
large constant C, the probability that {a, b} has an extension to F is o(n−γ−2). Taking a
union bound over all O(n2) pairs of vertices, we see that the probability that there exists
any pair of vertices with an extension to F is o(n−γ ). Since C is a constant, the number of
non-isomorphic ways to form F (a superposition of C distinct copies of H1, overlapping
on one particular edge) is still a constant. Taking another union bound over all such F, we
complete the proof.

Corollary 2.9. Suppose that n � m � n2, and let p = 2m/n2. Let H \ ke have the
balanced extension property, and let v and e be the numbers of vertices and edges in H \ ke.
Suppose that nv−2pe is a negative power of n. Let us consider Gjm, where j is an arbitrary

Random Structures and Algorithms DOI 10.1002/rsa
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integer constant. Then, for any constant γ > 0, there exists a constant C such that with
probability 1 − o(n−γ ), every pair of distinct vertices {a, b} of Gjm completes at most C
copies of H \ (k − 1)e.

Proof. Fix a pair {a, b}. When counting the number of copies of H \ (k − 1)e completed
by that pair, each copy arises from an extension pair (H1, H2) and an extension of H1 to
H2 at the pair. In fact, this correspondence is bijective. The balanced extension property
guarantees that all such pairs are balanced. Since H is a fixed graph, only a constant number
of non-isomorphic pairs (H1, H2) can arise in this way, so repeated application of Theorem
2.8(ii) completes the proof.

3. WARM-UP

The purpose of this section is to illustrate on a concrete example the main ideas and tech-
niques that we will use in our proofs. We investigate the first nontrivial case, which is the
problem of avoiding K4 in the Achlioptas process with parameter 2. This turns out to be the
model for the general case.

Theorem. The threshold for avoiding K4 in the Achlioptas process with parameter 2 is
n28/19.

Proof of lower bound. We need to specify a strategy, and prove that it avoids K4 for many
rounds. At any intermediate stage in the process, consider a pair of points to be 2-dangerous
if the addition of an edge between them will create a copy of K4. Otherwise, if the addition of
the edge will create a copy of K4 \e, call the pair 1-dangerous. Every other pair is considered
to be 0-dangerous (not dangerous). The strategy is then to make an arbitrary choice among
the incoming edges that are minimally dangerous.

Let m be a function of n that satisfies m � n28/19. It suffices to show that for any
such m, this strategy succeeds whp. We also may assume without loss of generality that
m � n28/19/ log n. The precise form of the lower bound on m is not essential; it simplifies
the argument by disposing of uninteresting pathological cases when m is too small. As it is
easier to work with G(n, p), we will make all of our computations with respect to p, which
we define to be 2m/n2. Note that n−10/19/ log n � p � n−10/19. The following three claims
analyze the performance of our strategy.

(i) With probability 1 − o(n−4), Gm has O(n4p4) copies of K4 \ 2e and every pair of
vertices completes O(1) copies of K4 \ e.

(ii) With probability 1 − o(n−2), Gm has O(n6p9) copies of K4 \ e.
(iii) The probability of failure in m rounds is o(1).

For (i), it is easy to verify that K4 \2e is a balanced graph, no matter which two edges are
deleted. Then the number of copies of K4 \ 2e is roughly what it should be in the random
graph G(n, p)—this is made precise by Theorem 2.6, which bounds the number of copies
of K4 \ 2e in Gm by O(n4p4) wep since n4p4 is a positive power of n. It is also easy to verify
that K4 \ 2e has the balanced extension property, so since n2p4 is a negative power of n,
Corollary 2.9 shows that there is some constant C such that with probability 1 − o(n−4),
every pair of vertices in Gm completes at most C copies of K4 \ e. This proves (i).

Random Structures and Algorithms DOI 10.1002/rsa



AVOIDING SMALL SUBGRAPHS IN ACHLIOPTAS PROCESSES 173

For (ii), fix some i < m and consider the (i + 1)-st round. In this round, the strategy
will create one or more copies of K4 \ e only if both incoming edges span pairs that are 1-
or 2-dangerous. The number of such pairs is at most O(1) times the number of copies of
K4 \ 2e. Since Gi ⊂ Gm, claim (i) shows that with probability 1 − o(n−4), Gi has O(n4p4)

copies of K4 \ 2e and every pair of vertices completes O(1) copies of K4 \ e. Call this
event Ai, and condition on it. Even after conditioning, the incoming edges at the (i + 1)-st
round are still independently and uniformly distributed over the �(n2) unoccupied pairs
of Gi, so the probability that we are forced to create a new copy of K4 \ e in this round is

O((
n4p4

n2 )2) = O(n4p8). Furthermore, each time this occurs, we only create O(1) new copies
of K4 \ e because of our conditioning. Therefore, the number of new copies of K4 \ e in the
(i+1)-st round is stochastically dominated by O(1) times the Bernoulli random variable with
parameter O(n4p8). Letting i run through all m rounds, we see that with probability at least
1−∑

P[¬Ai] ≥ 1−o(n−2), the number of copies of K4 \e in Gm is O(1) ·Bin[m, O(n4p8)].
Since m = n2p/2, the expectation of this binomial is a positive power of n, so the Chernoff
bound implies that wep, it is O(m · n4p8) = O(n6p9). This proves (ii).

For (iii), fix some i and consider the probability that we lose in the (i + 1)-st round. The
strategy fails precisely when both of the incoming edges span pairs that are 2-dangerous
(completing K4), and the number of such pairs is at most O(1) times the number of copies
of K4 \ e. Since Gi ⊂ Gm, claim (ii) shows that with probability 1 − o(n−2), Gi has O(n6p9)

copies of K4 \e. Call this event Bi, and condition on it. Even after conditioning, the incoming
edges are still independently and uniformly distributed over the �(n2) unoccupied pairs of

Gi, so the probability that both incoming edges are 2-dangerous is O((
n6p9

n2 )2) = O(n8p18).
Therefore, letting i run through all m = n2p/2 rounds, a union bound shows that the
probability that we are forced to complete a copy of K4 by the end of the m-th round is
P ≤ O(n2p · n8p18) + ∑

P[¬Bi] = O(n10p19) + o(1) = o(1).

Proof of upper bound. Now suppose that m � n28/19. It suffices to show that we will
lose within the first 4m rounds whp. Again, we may assume without loss of generality
that m � n28/19 log n, and we will work in terms of G(n, p) with p = 2m/n2. Note that
n−10/19 � p � n−10/19 log n. Let us specify a sequence of graphs such that each graph
is obtained from the previous one by adding a single edge: let H0 = P4 (4-vertex path),
H1 = C4 (4-cycle), H2 = K4 \ e, and H3 = K4. It is easy to verify that the corresponding
pairs (H0, H1), (H1, H2), and (H2, H3) are all balanced extension pairs. Our result follows
from the following four claims:

(i) Gm always contains �(n4p3) copies of H0. Also, wep, every pair of vertices in G2m

extends O(n2p3) copies of H0 into H1.
(ii) G2m contains �(n4p4) copies of H1 whp, and with probability 1 − o(n−2), every

pair of vertices in G3m extends O(1) copies of H1 into H2.
(iii) G3m contains �(n6p9) copies of H2 whp, and with probability 1 − o(n−2), every

pair of vertices in G4m extends O(1) copies of H2 into H3.
(iv) The probability of survival through 4m rounds is o(1).

Proof of (i). Since the average degree in Gm is precisely 2m/n = np � 1, from Lemma
2.1 we conclude that the number of 4-vertex paths is �(n(np)3). The second part of this
claim follows from Theorem 2.8(i) since (H0, H1) is a balanced extension pair and n2p3 is
a positive power of n.
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Proof of (ii). The second part of (ii) follows from Theorem 2.8(ii) since (H1, H2) is bal-
anced and n2p4 is a negative power of n. To prove the first part of (ii), consider the (i + 1)-st
round, where m ≤ i < 2m. Regardless of the choice of strategy, if both incoming edges
span pairs that extend �(n2p3) copies of H0 into H1, we will be forced to create �(n2p3)

new copies of H1.
By (i), the total number of copies of H0 in Gi ⊃ Gm is �(n4p3). For a pair of vertices

{a, b}, let na,b be the number of copies of H0 that {a, b} extends to H1. Recall that this
definition does not depend on the presence of an edge between a and b. Since Gi ⊂ G2m,
claim (i) shows that wep, in Gi every na,b = O(n2p3). Call this event Ai, and condition
on it.

Let us estimate the average value of na,b over all pairs. Since H0 differs from H1 at
exactly one edge, each copy of H0 has a pair at which it contributes +1 to the sum

∑
na,b.

Therefore, averaging over all
(n

2

)
pairs of vertices, we obtain that the average number of

copies of H0 that are extended to H1 at a pair is �(n2p3). On the other hand, every pair
of vertices in Gi extends O(n2p3) copies of H0 into H1. Therefore, at least a constant
fraction γ (where γ = �(1) can be chosen to be the same for all i) of all

(n
2

)
pairs have

the property of extending �(n2p3) copies of H0 into H1. Let P be the set of all such
pairs. Regardless of the choice of strategy, if both incoming edges span pairs in P, we
will be forced to create �(n2p3) copies of H1. Since i = o(n2) = o(|P|) and incoming
edges are uniformly distributed over the

(n
2

) − i = (1 − o(1))
(n

2

)
unoccupied pairs, we

conclude that the probability that both incoming edges span pairs in P is q ≥ (1 + o(1))

γ 2 = �(1).
Let i run from m to 2m. Then, up to an error probability of at most

∑
P[¬Ai] = o(1), the

number of copies of H1 in G2m is at least Bin(m, q) · �(n2p3). By the Chernoff bound, the
binomial factor exceeds mq/2 = �(n2p) wep; thus, whp G2m has �(n2p ·n2p3) = �(n4p4)

copies of H1.

Proof of (iii). The second part of (iii) follows from Theorem 2.8(ii) since (H2, H3) is
balanced and n2p5 is a negative power of n. For the first part of (iii), let us consider the
(i + 1)-st round, with 2m ≤ i < 3m. Regardless of the choice of strategy, if both incoming
edges span pairs that extend copies of H1 into H2, we will create a copy of H2. Let P be the set
of all such pairs. We need a lower bound on |P|. Condition on the event B that G2m contains
�(n4p4) copies of H1, which occurs whp by (ii). Also by (ii), with probability 1 − o(n−2),
every pair of vertices in Gi only extends O(1) copies of H1 into H2, since Gi ⊂ G3m. Call
this event Ci, and condition on it.

Note that every copy of H1 contributes a pair to P which extends H1 into H2, namely
the pair at which it is missing an edge compared to H2. On the other hand, every such
pair was only counted O(1) times, since every pair in Gi extends O(1) copies of H1 into
H2. This implies that |P| = �(n4p4). The incoming edges are uniformly distributed over
all unoccupied pairs. If at least half of the pairs in P were occupied, then we would have
�(n4p4) � n6p9 copies of H2, which would already give the conclusion of (iii). Otherwise,
the probability that both incoming edges span pairs in P (hence forcing the creation of a

new copy of H2) is q ≥ (1 + o(1))(
|P|/2
n2/2

)2 = �((
n4p4

n2 )2) = �(n4p8).
Letting i run from 2m to 3m, we see that with error probability at most P[¬B] +∑
P[¬Ci] = o(1), either we already obtained the conclusion of (iii), or the total number of

copies of H2 is at least Bin(m, q). The expectation of this binomial is (n2p/2)q = �(n6p9),
which is a positive power of n. Hence, by the Chernoff bound, G3m has �(n6p9) copies of
H2 whp.
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Proof of (iv). Consider the (i+1)-st round, where 3m ≤ i < 4m. Regardless of the choice
of strategy, if both incoming edges span pairs that complete copies of H3 = K4, we lose.
We can lower bound the number of such pairs by �(n6p9) by conditioning on the following
events. Let D be the event that G3m contains �(n6p9) copies of H2, which occurs whp by
(iii). Also by (iii), with probability 1 − o(n−2), every pair of vertices in Gi extends O(1)

copies of H2 into H3; call this event Ei.
Even after conditioning, incoming edges in the (i + 1)-st round are independently and

uniformly distributed over the
(n

2

) − i = �(n2) unoccupied pairs of Gi. Therefore, the
probability that both pairs complete K4, conditioned on survival through the i-th round, is

pi = �((
n6p9

n2 )2) = �(n8p18). Letting i run from 3m to 4m, we see that the probability that
any strategy can survive for 4m rounds is at most

P ≤ P[¬D] +
∑

P[¬Ei] +
∏

(1 − pi) ≤ o(1) + exp
{
−

∑
pi

}

≤ o(1) + exp{−�(n2p · n8p18)} = o(1) + e−ω(1) = o(1),

which completes the proof.

4. AVOIDING Kt , GENERAL CASE

The previous section proved the threshold for avoiding Kt in the Achlioptas process with
parameter r, when t = 4 and r = 2. The case t = 3 will be covered in Section 6, which
considers all cycles Ct . In this section, we resolve all other cases, except for the special
case (t, r) = (4, 3) which requires more delicate analysis. We postpone this final case to
Section 8.

Theorem. For either t ≥ 5 and r ≥ 2, or t = 4 and r ≥ 4, the threshold for avoiding Kt

in the Achlioptas process with parameter r ≥ 2 is n2−θ , where θ is defined as follows:

s = �logr[(r − 1)t + 1]�, θ = rs(t − 2) + 2

rs
(( t

2

) − s
) + rs−1

r−1

.

Before we begin the proof, let us prove an inequality that we will use in two claims in
the lower bound, and the last claim of the upper bound.

Inequality 4.1. Let a > 2, b > 0, and r > 1, and let s be a positive integer. Define the
sequences {xs, xs−1, . . . , x0} and {ys, ys−1, . . . , y0} as follows. Set xs = a and ys = b, and
define the rest of the terms recursively by

xk−1 = 2 + (xk − 2)r, yk−1 = 1 + ykr.

Then for any p � n−x0/y0 , nxk pyk is a positive power of n for every k ∈ {s, . . . , 1}.

Proof. Fix any k ∈ {s, . . . , 1}. One can easily solve the recursions for xk and yk to find:

xk = rs−k(a − 2) + 2, yk = rs−kb + rs−k − 1

r − 1
.
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Therefore,
xk

yk
= rs−k(a − 2) + 2

rs−kb + rs−k−1
r−1

= rs(a − 2) + 2rk

rsb + rs−rk

r−1

.

By the original definition via the recursions, xk and yk are both positive, so the numerator
and denominator of the final fraction above are positive. Yet as k decreases, the numerator
decreases and the denominator increases. Therefore, xk/yk > x0/y0. In particular, since we
assumed that p � n−x0/y0 , we conclude that nxk pyk is a positive power of n, as desired.

Note that if we choose a = v(Kt) = t and b = e(Kt) − s = ( t
2

) − s, then the above
recursions produce x0 and y0 such that the fraction x0/y0 is equal to our θ . Let us now return
to the proof of our thresholds for avoiding Kt .

Proof of Theorem (lower bound). The strategy is a natural extension of the one used to
avoid K4. At any intermediate stage in the process, for any 1 ≤ d ≤ s, consider a pair
of points to be d-dangerous if d is the maximal integer such that the addition of an edge
between them will create a copy of Kt \ (s − d)e. If there is no such d, consider the pair
to be 0-dangerous. The strategy is then to make an arbitrary choice among the incoming
edges that are minimally dangerous.

Let m � n2−θ , and let p = 2m/n2. Again, we assume without loss of generality that
m � n2−θ / log n. Note that n−θ / log n � p � n−θ . We will analyze the performance of our
strategy by proving three successive claims:

(i) With probability 1 − o(n−2s), Gm has O(ntp( t
2)−s) copies of Kt \ se, and every pair of

vertices completes O(1) copies of Kt \ (s − 1)e.
(ii) For each k ∈ {s, s −1, . . . , 2}, and constants x and y such that (n2p)(

nxpy

n2 )r is a positive
power of n, statement (a) implies statement (b), which are defined as follows:

(a) With probability 1 − o(n−2k), Gm has O(nxpy) copies of Kt \ ke, and every pair of
vertices completes O(1) copies of Kt \ (k − 1)e.

(b) With probability 1 − o(n−2(k−1)), Gm has O((n2p)(
nxpy

n2 )r) copies of Kt \ (k − 1)e,
and every pair of vertices completes O(1) copies of Kt \ (k − 2)e.

(iii) The probability of failure in m rounds is o(1).

Again, we separate the proofs of the claims for clarity. At several points, we require certain
inequalities whose rather tedious proofs would interfere with the exposition. The appendix
contains the precise formulations of these statements.

Proof of (i). Lemma A.3 verifies that Kt \ se is a balanced graph, and the k = s case of
Inequality 4.1 shows that ntp( t

2)−s is a positive power of n, so Theorem 2.6 implies that
the number of copies of Kt \ se in Gm is O(ntp( t

2)−s) wep. For the second part of claim (i),
Lemma A.4 verifies that Kt \ se has the balanced extension property, and Inequality A.8
shows that nt−2p( t

2)−s is a negative power of n. So, Corollary 2.9 shows that there is some
constant C such that with probability 1 − o(n−2s), every pair of vertices in Gm completes at
most C copies of Kt \ (s − 1)e. This finishes claim (i).

Proof of (ii). Fix k, x, and y as specified, and let us show that (a) implies (b). First, since
every graph of the form Kt \ (k − 2)e always contains some graph of the form Kt \ (k − 1)e,
(a) immediately implies that with probability 1 − o(n−2k), every pair of vertices completes
O(1) copies of Kt \ (k − 2)e; this implies the second part of (b).
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It remains to show the first part of (b). Fix some i < m and consider the (i + 1)-st
round. In this round, the strategy will create one or more copies of Kt \ (k − 1)e only if
all r incoming edges span pairs that are at least (s − k + 1)-dangerous (i.e., create copies
of Kt \ (k − 1)e). The number of such pairs is at most O(1) times the number of copies
Kt \ ke. Since Gi ⊂ Gm, statement (a) implies that with probability 1 − o(n−2k), Gi has
O(nxpy) copies of Kt \ ke and every pair of vertices completes O(1) copies of Kt \ (k − 1)e.
Call this event Ai, and condition on it. Even after conditioning, incoming edges are still
independently and uniformly distributed over the �(n2) unoccupied pairs of Gi, so the
probability that some new copies of Kt \ (k − 1)e are created in this round is O((

nxpy

n2 )r).
Also, by our conditioning, the number of newly created copies of Kt \ (k − 1)e is still
O(1) even when this occurs. Therefore, the number of new copies of Kt \ (k − 1)e in the
(i + 1)-st round is stochastically dominated by O(1) times the Bernoulli random variable
with parameter O((

nxpy

n2 )r). Letting i run through all m rounds, we see that with probability
at least 1 − ∑

P[¬Ai] ≥ 1 − o(n−2(k−1)), the number of copies of Kt \ (k − 1)e in Gm

is O(1) · Bin[m, O((
nxpy

n2 )r)]. Since this binomial has expectation n2p
2 · O((

nxpy

n2 )r), which is
a positive power of n by the assumption on x and y, a Chernoff bound implies that it is
O((n2p)(

nxpy

n2 )r) wep. This finishes (ii).

Proof of (iii). The idea is to apply claim (i), and then to repeatedly apply claim (ii) until
we obtain a high-probability upper bound on the number of copies of Kt \ e. Then, we
complete the proof with essentially the same argument as in claim (iii) of the proof of the
lower bound for avoiding K4.

To keep track of the exponents of n and p in the successive upper bounds, define the
sequences {xs, xs−1, . . . , x0} and {ys, ys−1, . . . , y0} as in Inequality 4.1, which then verifies
that nxk pyk is a positive power of n for every k ∈ {s−1, . . . , 1}. Hence we can apply claims (i)
and (ii) until we conclude that with probability 1−o(n−2), Gm has O(nx1 py1) copies of Kt \e.

Now fix some i and consider the probability that we lose in the (i + 1)-st round. The
strategy fails precisely when all r of the incoming edges span pairs that are s-dangerous
(completing Kt), and the number of such pairs is at most O(1) times the number of copies of
Kt \e. Yet since Gi ⊂ Gm, the previous paragraph shows that with probability 1−o(n−2), Gi

has O(nx1 py1) copies of Kt \e. Call this event Bi, and condition on it. Even after conditioning,
incoming edges are still independently and uniformly distributed over the �(n2) unoccupied
pairs of Gi, so the probability that all incoming edges complete Kt is O((

nx1 py1

n2 )r). Therefore,
letting i run through all m = n2p/2 rounds, a union bound shows that the probability that we
are forced to complete a copy of Kt is P ≤ O((n2p)(

nx1 py1

n2 )r)+∑
P[¬Bi] = O(nx0 py0)+o(1).

This in turn is o(1) because we assumed that p � n−θ with θ = x0/y0. This completes the
proof.

Proof of Theorem (upper bound). Let m � n2−θ , and let p = 2m/n2. We will show that
whp, any strategy fails within �(m) rounds, which we again break into periods of length
m. We may assume that m � n2−θ log n without loss of generality. Note that n−θ � p �
n−θ log n.

As in the proof of the upper bound for avoiding K4, we will specify a sequence of
graphs such that each graph is obtained from the previous one by adding a single edge.
Let H1 = K� t

2 �,� t
2 � (the largest bipartite subgraph of Kt), and arbitrarily choose the rest of

the sequence {H2, H3, . . . , Hf }, where Hf = Kt , by adding one missing edge at a time. So,
f = 1 + ( t

2

) − � t
2�� t

2�, which is a constant because we assumed t to be fixed. Our result
follows from the following five claims:
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(i) Gm contains �(ntpe(H1)) copies of H1 whp.
(ii) Let k be a positive integer for which nt−2pe(Hk−1) is a positive power of n. Then Gkm

contains �(ntpe(Hk )) copies of Hk whp.
(iii) G(f −s)m contains �(ntpe(Hf −s)) copies of Hf −s whp. Also, nt−2pe(Hf −s) is a negative power

of n; hence with probability 1−o(n−2), every pair of vertices in G(f −s+1)m extends O(1)

copies of Hf −s into Hf −s+1.
(iv) For each k ∈ {s, s−1, . . . , 2}, and constants x and y such that nxpy � n2 and (n2p)(

nxpy

n2 )r

is a positive power of n, statement (a) implies statement (b), which are defined as
follows:
(a) G(f −k)m contains �(nxpy) copies of Hf −k whp, and with probability 1 − o(n−2),

every pair of vertices in G(f −k+1)m extends O(1) copies of Hf −k into Hf −k+1.
(b) G(f −k+1)m contains �((n2p)(

nxpy

n2 )r) copies of Hf −k+1 whp, and with probability
1 − o(n−2), every pair of vertices in G(f −k+2)m extends O(1) copies of Hf −k+1 into
Hf −k+2.

(v) The probability of survival through fm = �(m) rounds is o(1).

Proof of (i). We will actually prove that Gm contains �(ntpe(H1)) copies of H1 with cer-
tainty, not just whp. However, the rest of the claims only require a whp result in claim (i),
so we keep it there for the purpose of generality.

Since we assumed that p � n−θ and Inequality A.6 bounds −θ ≥ −� t
2�−1, Lemma

2.2 implies that the number of copies of the complete bipartite graph H1 = K� t
2 �,� t

2 � in any

m-edge graph is �(ntpe(H1)).

Proof of (ii). We proceed inductively. The base case of the induction follows from claim
(i). Now, suppose k satisfies the property that nt−2pe(Hk−1) is a positive power of n, and G(k−1)m

contains �(ntpe(Hk−1)) copies of Hk−1 whp. We will show that Gkm contains �(ntpe(Hk ))

copies of Hk whp.
Let us begin by conditioning on the high-probability event A from our inductive assump-

tion: that G(k−1)m contains �(ntpe(Hk−1)) copies of Hk−1. Now consider the (i + 1)-st round,
where (k − 1)m ≤ i < km. Since Gi ⊃ G(k−1)m, the total number of copies of Hk−1 in Gi is
�(ntpe(Hk−1)) by our conditioning.

Lemma A.5 verifies that (Hk−1, Hk) is a balanced extension pair, and we assumed that
nt−2pe(Hk−1) was a positive power of n, so Theorem 2.8(i) establishes that wep, every pair of
vertices in Gkm extends O(nt−2pe(Hk−1)) copies of Hk−1 into Hk . Since Gi ⊂ Gkm, the same
bound holds for Gi wep; call that event Bi, and condition on it.

For a pair of vertices {a, b}, let na,b be the number of copies of Hk−1 that the pair {a, b}
extends into Hk . Recall that this definition does not depend on the presence of an edge
between a and b. Let us estimate the average value of na,b over all pairs. Since Hk−1 differs
from Hk at exactly one edge, each copy of Hk−1 has a pair at which it contributes +1 to the
sum

∑
na,b. Therefore, averaging over all

(n
2

)
pairs of vertices, we obtain that the average

number of copies of Hk−1 that are extended to Hk at a pair is �(nt−2pe(Hk−1)).
On the other hand, every pair of vertices in Gi extends O(nt−2pe(Hk−1)) copies of Hk−1

into Hk . Therefore, at least a constant fraction γ = �(1) of all
(n

2

)
pairs have the property

of extending �(nt−2pe(Hk−1)) copies of Hk−1 into Hk . Let P be the set of all such pairs.
Regardless of the choice of strategy, if all r incoming edges span pairs in P, we will be
forced to create �(nt−2pe(Hk−1)) copies of Hk . Since i = o(n2) = o(|P|) and incoming edges
are uniformly distributed over the

(n
2

) − i = (1 + o(1))
(n

2

)
unoccupied pairs, we conclude

that the probability that all incoming edges span pairs in P is q ≥ (1 + o(1))γ r = �(1).
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Let i run from (k − 1)m to km. Then, up to an error probability of at most P[¬A] +∑
P[¬Bi] = o(1), the number of copies of Hk in Gkm is at least Bin(m, q) ·�(nt−2pe(Hk−1)).

By the Chernoff bound, the binomial factor exceeds mq/2 = �(n2p) wep; thus, whp Gkm

has �(n2p · nt−2pe(Hk−1)) = �(ntpe(Hk )) copies of Hk .

Proof of (iii). The first part follows directly from claim (ii), because Inequality A.7 verifies
that nt−2pe(H(f −s)−1) is a positive power of n. For the second part, (Hf −s, Hf −s+1) is a balanced
extension pair by Lemma A.5, and nt−2pe(Hf −s) is a negative power of n by Inequality A.8.
Therefore, Theorem 2.8(ii) shows that there is some constant C such that with probability
1 − o(n−2), every pair of vertices in G(f −s+1)m extends at most C copies of Hf −s into Hf −s+1.
This finishes claim (iii).

Proof of (iv). Fix k, x, and y as specified in the statement, and assume statement (a). Let
us begin by establishing the second part of (b). Lemma A.5 verifies that (Hf −k+1, Hf −k+2) is
a balanced extension pair, and Inequality A.8 shows that nt−2pe(Hf −k+1) is a negative power
of n for k ≤ s. Therefore, Theorem 2.8(ii) shows that there is some constant C such that
with probability 1 − o(n−2), every pair of vertices in G(f −k+2)m extends at most C copies of
Hf −k+1 into Hf −k+2. This finishes the second part of (b).

It remains to prove the first part of (b). Consider the (i + 1)-st round, with (f − k)m ≤
i < (f − k + 1)m. Regardless of the choice of strategy, if all r incoming edges span pairs
that extend copies of Hf −k into Hf −k+1, we will create a copy of Hf −k+1. Let P be the set of
all such pairs. We need a lower bound on |P|.

Condition on the high-probability event C of (a) that G(f −k)m contains �(nxpy) copies
of Hf −k . Since Gi ⊂ G(f −k+1)m, (a) implies that with probability 1 − o(n−2), every pair of
vertices in Gi extends O(1) copies of Hf −k into Hf −k+1. Call this event Di, and condition on
it.

Note that every copy of Hf −k contributes a pair to P which extends Hf −k into Hf −k+1,
namely the pair at which it is missing an edge compared to Hf −k+1. On the other hand, every
such pair was counted at most a constant number of times, since every pair in Gi extends
O(1) copies of Hf −k into Hf −k+1. This implies that |P| = �(nxpy). The incoming edges
are uniformly distributed over all unoccupied pairs. If at least half of the pairs in P were
occupied, then we would have �(nxpy) copies of Hf −k+1. Yet this would already give us the
conclusion of (b) since:

nxpy � (n2p)

(
nxpy

n2

)
� (n2p)

(
nxpy

n2

)r

.

(The first inequality is because p � 1, and the second inequality follows from the assump-
tion that nxpy � n2.) Otherwise, if less than half of the pairs in P are occupied, then the
probability that all incoming edges span pairs in P (hence forcing the creation of a copy of
Hf −k+1) is q ≥ (1 + o(1))(

|P|/2
n2/2

)r = �((
nxpy

n2 )r).
Letting i run from (f − k)m to (f − k + 1)m, we see that with error probability at

most P[¬C] + ∑
P[¬Di] = o(1), either we already obtained the conclusion of (b), or the

total number of copies of Hf −k+1 is at least Bin(m, q). The expectation of the binomial is

(
n2p

2 )q = �((n2p)(
nxpy

n2 )r), which is a positive power of n by assumption. Hence, by the

Chernoff bound, G(f −k+1)m has �((n2p)(
nxpy

n2 )r) copies of Hf −k+1 whp.
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Proof of (v). The result of claim (iii) plugs in directly to claim (iv), which we may iterate
until it gives us a lower bound on the number of copies of Hf −1 = Kt \e and an upper bound
on the number of copies of Hf −1 that any pair extends into Hf = Kt .

To keep track of exponents in the successive lower bounds, define the sequences
{xs, xs−1, . . . , x0} and {ys, ys−1, . . . , y0} exactly as in Inequality 4.1. To verify that we can
indeed iterate claim (iv), we must show that for all k ∈ {s, s − 1, . . . , 2}, we have that
nxk pyk � n2, and nxk−1 pyk−1 is a positive power of n. The first statement follows from an
easy induction: claim (iii) establishes it for k = s, and if nxk pyk � n2, then nxk pyk

n2 � 1,

so combined with p � 1, we see that nxk−1 pyk−1 = (n2p)(
nxk pyk

n2 )r � n2. The second state-
ment is verified by Inequality 4.1. Therefore, we arrive at the result that G(f −1)m contains
�(nx1 py1) copies of Hf −1 = Kt \ e whp. Call this event E, and condition on it. We also find
that with probability 1 − o(n−2), every pair of vertices in Gfm extends O(1) copies of Hf −1

into Hf (i.e., completes O(1) copies of Kt). The same probability bound also holds in Gi for
any i ≤ fm, because Gi ⊂ Gfm; let Fi be the corresponding event.

Now consider the (i+1)-st round, where (f −1)m ≤ i < fm. Regardless of the choice of
strategy, if all r incoming edges span pairs that complete copies of Kt , we will lose. We can
bound the number of such pairs by �(nx1 py1) by conditioning on the above events E and Fi.
Even after conditioning, the incoming edges in this round still independent and uniformly
distributed over the

(n
2

) − i = �(n2) unoccupied pairs of Gi. Therefore, the probability that

all r pairs complete Kt , conditioned on survival through the i-th round, is pi = �((
nx1 py1

n2 )r).
Letting i run from (f − 1)m to fm, we see that the probability that any strategy can survive
for fm rounds is at most

P ≤ P[¬E] +
∑

P[¬Fi] +
∏

(1 − pi) ≤ o(1) + exp
{
−

∑
pi

}

≤ o(1) + exp

{
−�

(
(n2p)

(
nx1 py1

n2

)r)}
= o(1) + exp{−�(nx0 py0)}.

This in turn is o(1) because we assumed that p � n−θ with θ = x0/y0. This completes the
proof.

5. ABSTRACTION INTO GENERAL ARGUMENT

Note that we structured our exposition of the previous section in the following manner. The
arguments did not directly use properties of the specific graph that we were avoiding (Kt).
Rather, they were linked to lemmas and inequalities that proved certain properties (e.g.,
balanced-ness, etc.) about Kt . Let us now isolate these necessary “ingredients” that one can
plug in to our general machinery to prove thresholds.

For the rest of this section, let H be the fixed graph which we wish to avoid. Our arguments
allow one to prove the threshold for avoiding H in the Achlioptas process with parameter
r simply by specifying several parameters, and then proving some lemmas and inequalities
that do not need to refer to the Achlioptas process at all. We first describe the parameters.

• s: this was the number of levels of danger considered by the avoidance strategy in the
proof of the lower bound. At any intermediate stage in the process, for any 1 ≤ d ≤ s,
we considered a pair of points to be d-dangerous if d was the maximal integer such that
the addition of an edge between them created a copy of H \ (s − d)e. If there was no
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such d, we considered the pair to be 0-dangerous. Recall that the strategy was then to
make an arbitrary choice among the incoming edges that were minimally dangerous.

• A sequence of graphs {H1, . . . , Hf } sharing the same vertex set, with each successive
graph containing exactly one more edge: this was used in the upper bound argument to
iteratively prove lower bounds on the number of copies of Hi, proceeding from i = 1
to i = f .

The correct choice of s then determined θ , the negative exponent in the threshold (in terms
of p) for avoidance:

θ = rs(v(H) − 2) + 2

rs(e(H) − s) + rs−1
r−1

.

Assuming that the parameters were suitably chosen, one then only needed to establish
the following lemmas and inequalities in order to prove that the threshold for avoiding H
in the Achlioptas process with parameter r is n2−θ .

For proof of lower bound. Here, n−θ / log n � p � n−θ .

1. H \ se is a balanced graph. This allowed us to prove in claim (i) that wep, Gm has
O(nv(H)pe(H)−s) copies of H \ se. For H = Kt , this was provided by Lemma A.3.

2. H \ se has the balanced extension property, and nv(H)−2pe(H)−s is a negative power of
n. This allowed us to prove in claim (i) that with probability 1 − o(n−2s), every pair
of vertices in Gm completes O(1) copies of H \ (s − 1)e. For H = Kt , these were
provided by Lemma A.4 and Inequality A.8.

For proof of upper bound. Here, n−θ � p � n−θ log n.

1. Gm contains �(nv(H1)pe(H1)) copies of H1 whp. This was claim (i), and for H = Kt , it
was provided by the extremal estimate on the number of Ks,t (Lemma 2.2), along with
Inequality A.6, which assured that p was large enough to apply the extremal result.

2. Each consecutive pair (Hk , Hk+1) is a balanced extension pair. This was used through-
out the proof of the upper bound, and for H = Kt , it was provided by Lemma A.5.

3. nv(H)−2pe(H)−s−1 is a positive power of n. This was used in claim (iii) to show that
we could iterate the argument of claim (ii) enough times to conclude that G(f −s)m

contained �(nv(Hf −s)pe(Hf −s)) copies of Hf −s whp. For H = Kt , this was provided by
Inequality A.7.

4. nv(H)−2pe(H)−s is a negative power of n. This was used in claim (iii) to transition to the
next inductive process, which relied on the copies of Hf −s not being too concentrated
on any pair of vertices. Note: this statement was already required above for the lower
bound, so we do not need to check it again.

6. AVOIDING CYCLES

Now we show by example how to use our machinery to prove avoidance thresholds. We start
with an easy application which completely solves the problem for cycles Ct . In light of the
previous section, we only need to provide the required parameters, lemmas, and inequalities.
We will specify these in the same order that they were presented in the previous section.
This will prove the following theorem.
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Theorem. For t ≥ 3, the threshold for avoiding Ct in the Achlioptas process with

parameter r ≥ 2 is n2− r(t−2)+2
r(t−1)+1 .

Proof. We use the parameter s = 1, and the sequence of graphs H1 = Ct \e, H2 = Ct . This
gives the threshold n2−θ , where θ = rs(v(Ct )−2)+2

rs(e(Ct )−s)+ rs−1
r−1

= r(t−2)+2
r(t−1)+1 , which matches the claimed

result. Now we need to provide the required lemmas and inequalities. For the reader’s
convenience, we have reproduced the italicized statements from Section 5.

For proof of lower bound. Here, n−θ / log n � p � n−θ .

1. Ct \ e is a balanced graph. This is obvious.
2. Ct \e has the balanced extension property, and nv(Ct )−2pe(Ct )−1 = nt−2pt−1 is a negative

power of n. The first part is obvious. For the second, since p � n− r(t−2)+2
r(t−1)+1 , we must

establish that (t − 2) − (t − 1) r(t−2)+2
r(t−1)+1 < 0. Routine algebra shows that the left hand

side equals − t
r(t−1)+1 , which is certainly negative when t ≥ 3, r ≥ 2.

For proof of upper bound. Here, n−θ � p � n−θ log n.

1. Gm contains �(nv(H1)pe(H1)) copies of H1 whp. The average degree of Gm is precisely
np by the definition of p = 2m/n2. We show in item #3 below that np is a positive power
of n, so it tends to infinity with n. Thus, we may apply Lemma 2.1, an extremal result
counting the number of paths, to conclude that Gm contains at least (1+o(1))n(np)t−1

copies of the t-vertex path H1, as desired.
2. (H1, H2) is a balanced extension pair. This is easy to see.
3. nv(Ct )−2pe(Ct )−1−1 = (np)t−2 is a positive power of n. It suffices to show that np is a

positive power of n. Since p � n− r(t−2)+2
r(t−1)+1 , this amounts to proving that 1− r(t−2)+2

r(t−1)+1 > 0.

Routine algebra shows that the left hand side equals r−1
r(t−1)+1 , which is certainly positive

when t ≥ 3, r ≥ 2.

As we have provided all of the necessary ingredients to apply our machinery, we are
done.

7. AVOIDING Kt ,t

Now we show a more complex application of our machinery, which completely solves the
problem for Kt,t . This will prove the following theorem.

Theorem. Suppose that t ≥ 3 and r ≥ 2 are fixed integers. The threshold for avoiding
Kt,t in the Achlioptas process with parameter r is n2−θ , where θ is defined as follows:

s = �logr[(r − 1)t + 1]�, θ = rs(2t − 2) + 2

rs(t2 − s) + rs−1
r−1

.

7.1. Parameters

The value of s is already specified in the statement of the theorem, so we proceed to give
the sequence of graphs {H1, . . . , Hf }. The sequences are quite different depending on the
parity of t, so we describe them separately.
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Case 1: t is even. Let H1 be the 4-partite graph with parts V1, V2, V3, V4, each of size
t/2, and edges such that (V1, V2), (V1, V4), and (V3, V2) are complete bipartite graphs.
Let {H2, . . . , H1+(t/2)} be obtained by successively adding single edges until H1+(t/2) has
a perfect matching between V3 and V4. Then, arbitrarily choose the rest of the sequence
{H2+(t/2), . . . , Hf } by adding one edge at a time, until the final term is the complete bipartite
graph Kt,t with bipartition (V1 ∪ V3, V2 ∪ V4). Note that f = 1 + t2/4.

Case 2: t is odd. Let H1 be a 6-partite graph with parts {Vi}6
1 such that V3 and V4 are

singletons, and the other four parts each have size �t/2�. The edges are as follows: the two
pairs (V1, V2) and (V5, V6) are each complete bipartite graphs, the vertex in V3 is adjacent
to all of V2 ∪ V4 ∪ V6, and the vertex in V4 is adjacent to all of V1 ∪ V3 ∪ V5. There are no
more edges.

Let {H2, . . . , H1+�t/2�} be obtained by successively adding single edges until H1+�t/2� has
a perfect matching between V1 and V6. To create the next �t/2� graphs in the sequence, we
put down a matching between V5 and V2, one edge at a time. Finally, arbitrarily choose the
rest of the sequence {H2+2�t/2�, . . . , Hf } by adding one edge at a time, until the final term is
the complete bipartite graph Kt,t with bipartition (V1 ∪ V3 ∪ V5, V2 ∪ V4 ∪ V6). Note that
f = 1 + 2�t/2�2.

7.2. Lemmas and Inequalities

Next, we provide the required lemmas and inequalities. For the reader’s convenience, we
have reproduced the italicized statements from Section 5.

For proof of lower bound. Here, n−θ / log n � p � n−θ .

1. Kt,t \ se is a balanced graph. This is now provided by Lemma B.1. Actually, the
graph is not balanced when t = 3 and r = 2, but in that particular case, Lemma B.1
additionally proves that the number of copies of Kt,t \ se in Gm is still O(nv(H)pe(H)−s)

wep, which is all we really need.
2. Kt,t \ se has the balanced extension property, and nv(Kt,t )−2pe(Kt,t )−s is a negative power

of n. These are now provided by Lemma B.2 and Inequality B.8.

For proof of upper bound. Here, n−θ � p � n−θ log n.

1. Gm contains �(nv(H1)pe(H1)) copies of H1 whp. This time, we use Inequality B.6 to
show that −θ > −2/t. Since we assume that p � n−θ for the upper bound argument,
this provides the condition required to apply either Lemma 7.1 if t is even, or Lemma
7.2 if t is odd. Both lemmas (presented below) lead to the required final statement.

2. Each consecutive pair (Hk , Hk+1) is a balanced extension pair. This is now provided
by Lemma B.4 if t is even, and by Lemma B.5 if t is odd.

3. nv(Kt,t )−2pe(Kt,t )−s−1 is a positive power of n. This is provided by Inequality B.7.

7.3. Proofs of Supporting Lemmas

We conclude this section by proving the two lemmas that provide the first component of
the proof of the upper bound. We start with the lemma that is used when t is even.
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Lemma 7.1. For any fixed positive integers k and l, consider the following 4-partite graph,
which we call H. Let the parts be V1, V2, V3, V4, with |V1| = |V2| = k and |V3| = |V4| = l,
and place edges such that (V1, V2), (V1, V4), and (V2, V3) are complete bipartite graphs.
There are no more edges. Then, there exists a constant ck such that for any p � n−1/k, every
graph with n vertices and

(n
2

)
p edges contains at least (ck + o(1))n2k+2lpk2+2kl copies of H.

Proof. Let us fix an ambient graph G with n vertices and
(n

2

)
p edges. By Lemma 2.2, the

number of copies of Kk,k in G is at least (1 + o(1))n2kpk2
. Recall that the k-codegree of a

set U of k distinct vertices is the number of vertices that are adjacent to all of U. Let us say
that a copy of Kk,k is deficient if either of the sides of its bipartition has k-codegree less than
1
2 npk in G. We claim that at most 1

2 + o(1) of the copies of Kk,k are deficient.
To see this, note that if an ordered k-tuple of distinct vertices has k-codegree less than

1
2 npk , then it can extend to at most ( 1

2 npk)k copies of Kk,k . The number of such k-tuples is

at most nk; therefore, the number of deficient copies of Kk,k is at most nk( 1
2 npk)k ≤ 1

2 n2kpk2
,

as claimed.
Yet each nondeficient copy of Kk,k extends to at least

( 1
2 npk − 2k

l

)
l! ·

( 1
2 npk − 2k − l

l

)
l!

copies of H. This is because we may consider the copy of Kk,k to be V1 ∪ V2, we choose V3

from the common neighborhood of V2 excluding the 2k vertices in V1 ∪ V2, and finally we
choose V4 from the common neighborhood of V1 excluding the 2k+l vertices in V1∪V2∪V3.
Since we assumed that p � n−1/k , the binomial coefficients are asymptotically monomials
of degree l, so we conclude that each nondeficient copy of Kk,k extends to �((npk)l ·(npk)l) =
�(n2lp2kl) copies of H. Since there are always at least ( 1

2 +o(1))n2kpk2
non-deficient copies

of Kk,k , we conclude that the number of copies of H is always �(n2k+2lpk2+2kl), as claimed.

Using Lemma 7.1 as a building block, we now prove the lemma that provides the first
component of the upper bound when t is odd. Actually, we prove a result for G2m instead
of Gm, but this does not matter for the purpose of the general argument.

Lemma 7.2. Let k be a positive integer. Let H be a 6-partite graph with parts {Vi}6
1 such

that V3 and V4 are singletons, and the other four parts each have size k. Let the edges of
H be as follows: the two pairs (V1, V2) and (V5, V6) are each complete bipartite graphs,
the vertex in V3 is adjacent to all of V2 ∪ V4 ∪ V6, and the vertex in V4 is adjacent to all of
V1 ∪ V3 ∪ V5. There are no more edges.

Consider G2m, the graph after the 2m-th round of the Achlioptas process with parameter
r ≥ 2. Let p = 2m/n2, and suppose that p � n−θ with −θ > −1/(k + 1

2 ). Then G2m

contains �(nv(H)pe(H)) copies of H whp.

Proof. Let H1 be the subgraph of H induced by V1 ∪ V2 ∪ V3 ∪ V4, and let H0 be the
subgraph of H1 with the edge between V3 and V4 deleted. Observe that we can find a copy
of H in a graph by first looking for a pair of vertices for the site of the edge between V3 and
V4, and then looking for two disjoint copies of H0 that are extended into H1 by that pair.

Consider the (i + 1)-st turn, for some m ≤ i < 2m. By Lemma 7.1, Gm (and hence
Gi ⊃ Gm) always contains �(n2k+2pk2+2k) copies of H0. Lemma B.3 verifies that (H0, H1)

is a balanced extension pair, and n2kpk2+2k is a positive power of n because we assumed that
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p � n−θ with −θ > −1/(k + 1
2 ) and k ≥ 1. Thus, Theorem 2.8(i) establishes that wep,

every pair of vertices in Gi ⊂ G2m extends O(n2kpk2+2k) copies of H0 into H1. Call this event
Ai, and condition on it.

For a pair of vertices {a, b}, let na,b be the number of copies of H0 that the pair
{a, b} extends into H1. Recall that this definition does not depend on the presence of an
edge between a and b. Let us estimate the average value of na,b over all pairs. Since
H0 differs from H1 at exactly one edge, each copy of H0 has a pair at which it con-
tributes +1 to the sum

∑
na,b. Therefore, averaging over all

(n
2

)
pairs of vertices, we

obtain that the average number of copies of H0 that are extended to H1 at any pair is
�(n2k+2pk2+2k).

On the other hand, by our conditioning, every pair of vertices in Gi extends O(n2kpk2+2k)

copies of H0 into H1. Therefore, at least a constant fraction γ = �(1) of all
(n

2

)
pairs have

the property of extending �(n2kpk2+2k) copies of H0 into H1. Let P be the set of all such
pairs. Regardless of the choice of strategy, if all r incoming edges span pairs in P, we will
be forced to choose a pair in P. This will create �((n2kpk2+2k)2) = �(n4kp2k2+4k) pairs
of copies of H0 that are extended to H1 by the chosen pair. Such a pair of copies of H0

would become a new copy of H after the edge is added, if the pair of copies were disjoint.
If the pair of copies of H0 is not disjoint, then let us say that they create a degenerate
copy of H. For now, let us count degenerate copies of H along with the true copies of
H . Later, we will show that the degenerate copies are vastly outnumbered by true copies
of H.

Since i = o(n2) = o(|P|) and incoming edges are uniformly distributed over the(n
2

)− i = (1+o(1))
(n

2

)
unoccupied pairs, we conclude that the probability that all incoming

edges span pairs in P is q ≥ (1 + o(1))γ r = �(1). Let i run from m to 2m. Then wep, the
number of (possibly degenerate) copies of H in G2m is at least Bin(m, q) · �(n4kp2k2+4k).
By the Chernoff bound, the binomial factor exceeds mq/2 = �(n2p) wep, so we con-
clude that G2m has �(n2p · n4kp2k2+4k) = �(nv(H)pe(H)) (possibly degenerate) copies of
H whp.

To finish the proof of this lemma, we must show that the number of degenerate copies
of H in G2m is o(nv(H)pe(H)) whp. For convenience, we will work with G(n, p) instead of
G2m because Lemma 2.4 shows that we may couple G2m with G(n, 4rp), and the constant 4r
disappears under the “o(·)” notation. Note that the underlying graph of a degenerate copy
of H is a superposition of two copies of Kk+1,k+1, overlapping on at least 3 vertices. So, let
us consider any such superposition, and call the underlying graph F. Let v′ = v(F) and
e′ = e(F). The copies overlap on at least 3 vertices, so v′ < v(H). It is easy to check that
since Kk+1,k+1 is a balanced graph, e′

v′ ≥ e(H)

v(H)
. So, the expected number of copies of F in

G(n, p) is:

E ≤ nv′
pe′ = (npe′/v′

)v′ ≤ (npe(H)/v(H))v′ = (nv(H)pe(H))v′/v(H).

Now, we assumed that p � n−1/(k+ 1
2 ), so nv(H)pe(H) � 1 because v(H) = 4k + 2 and

e(H) = 2k2 + 4k + 1. Furthermore, v′ < v(H), so Markov’s inequality implies that whp,
G(n, p) has o(nv(H)pe(H)) copies of F. Since each copy of F can account for at most a
constant number (depending only on k) of degenerate copies of H, and there is only a
constant number of non-isomorphic superpositions F, we conclude that whp, G(n, p) has
o(nv(H)pe(H)) degenerate copies of H. This completes the proof of the lemma.
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8. AVOIDING K4 IN THE ACHLIOPTAS PROCESS WITH PARAMETER 3

To apply the machinery of Section 5, one needs to prove that certain quantities are positive
or negative powers of n. In our study of avoiding cycles, cliques, and complete bipartite
graphs, the only case in which we encounter a key exponent that is not separated from zero
is when we are avoiding K4 in the Achlioptas process with parameter 3.

However, the separation of the exponent from zero was merely a convenience which
allowed us to bound maxima of families of random variables (e.g., the maximum codegree
in a graph) whp. When we do not have this condition, we may instead bound the entire
distribution of the family.

Lemma 8.1. Let n−1/2 � p � n−1/2 log n. Then G(n, p) satisfies the following property
whp: all codegrees are at most np2 log n, and for every integer 4 ≤ k ≤ log n, the number
of pairs with codegree at least knp2 is at most n2/k3.

This result, which we prove at the end of this section, allows us to prove our final
threshold.

Theorem. The threshold for avoiding K4 in the Achlioptas process with parameter 3 is
n3/2.

Proof of lower bound. A shortsighted strategy works in this instance: arbitrarily select
any one of the incoming edges that does not create a copy of K4. Let m � n3/2, and let
p = 2m/n2. Again, we assume without loss of generality that m � n3/2/ log n. Note that
n−1/2/ log n � p � n−1/2. We will analyze the performance of our strategy by proving two
successive claims:

(i) Gm has O(n4p5) copies of K4 \ e wep.
(ii) The probability of failure in m rounds is o(1).

The interested reader may check that if we followed the recipe for avoiding Kt in Section
4, we would start by counting copies of K4 \2e instead of K4 \ e. This is essentially the only
change in the lower bound argument, but we provide the details below for completeness.

For (i), K4 \ e is balanced and n4p5 is a positive power of n, so Theorem 2.6 implies that
the number of copies of K4 \ e in Gm is O(n4p5) wep.

For (ii), consider the probability that the strategy fails at the (i + 1)-st round for some
i < m, i.e., that all 3 incoming edges span pairs that complete copies of K4. The number of
such pairs is upper bounded by the number of copies of K4 \ e. Since Gi ⊂ Gm, claim (i)
implies that Gi has O(n4p5) copies of K4 \ e wep. Call this event Ai, and condition on it.

Then, the chance that all 3 incoming edges complete K4 is O((
n4p5

n2 )3) = O(n6p15). Letting
i run through all m = n2p/2 rounds, a union bound shows that the probability that we are
forced to complete a copy of K4 by the m-th round is P ≤ O(n2p · n6p15) + ∑

P[¬Ai] =
O(n8p16) + o(1) = o(1), as desired.

Proof of upper bound. Let m � n3/2, and let p = 2m/n2. We will show that whp, any
strategy fails within 3m rounds, which we break into periods of length m. Again, we may
assume that m � n3/2 log n without loss of generality. Note that n−1/2 � p � n−1/2 log n.
Our result follows from the following three claims:
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(i) Gm contains �(n2) pairs of vertices with codegree at least 2 whp.
(ii) G2m contains �(n2p) copies of K4 \ e whp, and with probability 1 − o(n−2), every

pair of vertices in G3m extends O(1) copies of K4 \ e into K4.
(iii) The probability of survival through 3m rounds is o(1).

Proof of (i). In the random graph, the expected codegree is roughly np2 � 2, but since we
do not know how far p exceeds n−1/2, we need a slightly more careful argument. Let S be
the sum of the codegrees

∑
{u,v} d(u, v) over all unordered pairs {u, v}, and let us decompose

S = S1 + S2 + S3, where S1 is the contribution from summands with d(u, v) ∈ {0, 1}, S2 is
the contribution from summands with 2 ≤ d(u, v) ≤ 4np2, and S3 is the remainder. We aim
to show that S2 = �(n3p2), which will imply the result.

By double-counting, S = ∑
v

(d(v)
2

)
, where d(v) is the degree of vertex v. By convexity,

this is always at least n
(d

2

)
, where d is the average degree. Since Gm has exactly m edges,

d = 2m/n = np � 1. Therefore, S ≥ (0.5 + o(1))n(np)2.
On the other hand, Lemma 8.1 shows that whp, Gm has the property that all codegrees are

at most np2 log n, and for every integer 4 ≤ k ≤ log n, the number of pairs with codegree
at least knp2 is at most n2/k3. Conditioning on this, we may then bound S3, the sum of
codegrees which exceed 4np2, by:

S3 ≤
log n∑
k=4

(k + 1)np2 · n2

k3

≤ 5

4

log n∑
k=4

n3p2

k2

≤ n3p2 · 5

4

(
π 2

6
− 1

12
− 1

22
− 1

32

)

≤ 0.4n3p2.

Also, S1, the sum of codegrees which are in {0, 1}, is trivially at most
(n

2

) � n3p2 since
we assumed p � n−1/2. So, S2, the sum of codegrees between 2 and 4np2, is at least
S2 = S − S1 − S3 ≥ 0.05n3p2. Therefore, whp the number of pairs with codegree at least 2
is at least 0.05n3p2/(4np2) = �(n2), as claimed.

Proof of (ii). The second part follows from Theorem 2.8(ii) because (K4 \ e, K4) is a
balanced extension pair and n2p5 is a negative power of n. Let us now concentrate on the
first part. Conditioning on the high probability event in claim (i), we may now assume that in
Gm, the proportion of pairs with codegree at least 2 is some γ = �(1). Consider the (i+1)-st
round, where m ≤ i < 2m. Regardless of the choice of strategy, if all three incoming edges
span pairs that each have codegree at least 2, then we will be forced to create a new copy of
K4 \ e. Incoming edges are uniformly distributed over unoccupied pairs, and the number of
occupied pairs in Gi is exactly i = o(n2). So, since Gi ⊃ Gm, the probability that all three
incoming edges span pairs with codegree at least 2 is q ≥ (1 + o(1))γ 3 = �(1).

Let i run from m to 2m. Then, the number of copies of K4 \ e in G2m is at least Bin(m, q).
By the Chernoff bound, this exceeds mq/2 = �(n2p) wep, so we are done.

Proof of (iii). Consider the (i+1)-st round, where 2m ≤ i < 3m. Regardless of the choice
of strategy, if all three incoming edges span pairs that complete copies of K4, we will lose.
We can lower bound the number of such pairs by �(n2p) by conditioning on the following
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events. Let A be the event that G2m contains �(n2p) copies of K4 \ e, which occurs whp by
(ii). Also by (ii), with probability 1 − o(n−2), every pair of vertices in Gi ⊂ G3m extends
O(1) copies of K4 \ e into K4; call this event Bi.

Even after conditioning, the incoming edges in this round are still independently and
uniformly distributed over the

(n
2

) − i = �(n2) unoccupied pairs of Gi. Therefore, the
probability that both pairs complete K4, conditioned on survival through the i-th round, is

pi = �((
n2p
n2 )3) = �(p3). Letting i run from 2m to 3m, we see that the probability that any

strategy can survive for 3m rounds is at most

P ≤ P[¬A] +
∑

P[¬Bi] +
∏

(1 − pi) ≤ o(1) + exp
{
−

∑
pi

}

≤ o(1) + exp{−�(n2p · p3)} = o(1) + e−ω(1) = o(1),

which completes the proof.

It remains to establish Lemma 8.1, which we used to control the distribution of codegrees
in claim (i) of the upper bound.

Proof of Lemma 8.1. Each codegree is distributed as Bin(n − 2, p2), so a union bound
shows that the probability that some codegree exceeds np2 log n is at most

P ≤ n2 ·
(

n

np2 log n

)
(p2)np2 log n ≤ n2 ·

(
enp2

np2 log n

)np2 log n

= o(1).

Next, fix any 4 ≤ k ≤ log n, and let X be the number of pairs with codegree at least knp2.
Consider an arbitrary vertex v, and let Xv be the number of vertices u �= v such that the
codegree of {v, u} is at least knp2. Note that X = 1

2

∑
Xv.

Since d(v) is binomially distributed Bin(n − 1, p) and np is a positive power of n, the
degree d(v) is at most 1.1np wep by Chernoff. Condition on this, and condition further on
a neighborhood N(v) of size d(v). For each w �∈ N(v) ∪ {v}, define the indicator random
variable Iw to be 1 if and only if the codegree of {v, w} is at least knp2, or equivalently, if w
has at least knp2 neighbors in N(v). Note that because we already fixed N(v), these Iw are
independent since they are determined by disjoint sets of edges. Yet k ≥ 4 and np2 � 1, so
each Iw has probability

q = P[Iw] ≤
(

1.1np

knp2

)
pknp2 ≤

(
1.1enp2

knp2

)knp2

≤
(

3

k

)knp2

� 1

k3
.

Therefore, Xv is stochastically dominated by d(v)+Bin(n−1−d(v), q). Since k ≤ log n, a
Chernoff bound implies that wep, Xv ≤ 1.1np+2nq = o(n/k3), which gives X = 1

2

∑
Xv =

o(n2/k3). The result follows by taking a union bound over all v and 4 ≤ k ≤ log n.

9. CONCLUDING REMARKS

• Although our theorems treat specific graphs (cycles, cliques, and complete bipartite
graphs), we conjecture that the thresholds for avoiding general graphs H follow from
the natural generalization of the recipe that we used.

To apply our machinery from Section 5, the first thing that we needed to specify was
the parameter s. This was the number of levels of danger considered by the avoidance
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strategy in the proof of the lower bound. The correct choice of s then determined θ ,
the negative exponent in the threshold (in terms of p) for avoidance:

θ(H, r, s) = rs(v(H) − 2) + 2

rs(e(H) − s) + rs−1
r−1

.

Furthermore, it is clear that the threshold for avoiding any fixed subgraph H ′ ⊂ H is a
lower bound for the threshold for avoiding H itself. This is because any strategy that
avoids H ′ will certainly avoid H as well.

In light of this, we conjecture that the threshold for avoiding H in the Achlioptas
process with parameter r is n2−θ∗

, where θ∗ is the minimum value of θ(H ′, r, s) when
s runs over all nonnegative integers and H ′ runs over all subgraphs of H.

• Just as in the case of analyzing the Achlioptas process for giant component avoidance
[6], one can also consider the offline version of the fixed subgraph avoidance problem.
In this offline version, all random r-tuples of edges arriving during the process are
accessible to an algorithm, and it can make its choices at each round, relying on
the perfect knowledge of the past and the future. The question is still how long the
algorithm can typically avoid the appearance of a copy of a fixed graph H. We expect
that in most of the cases there will be a sizable difference between the online and the
offline thresholds. Here is a sketch of the illustrative case of H = K3, r = 2. For this
case we can prove that if m = o(n4/3), then one can whp avoid a copy of K3 during
the first m rounds in the offline version. This should be compared to the threshold
of m = n6/5 for the online version, given by Theorem 1.1. The argument proceeds
as follows. Set p = 2m/n2. The offline model in this case can be approximated quite
accurately by generating a random graph G according to the distribution G(n, 2m), and
then splitting the edges of G randomly into m pairs: (e1, f1), . . . , (em, fm). Denote the
above random matching of E(G) by π . We use the following strategy, while processing
the pairs (ei, fi): in each pair (ei, fi) choose an arbitrary edge not participating in any
triangle in G, otherwise pick an arbitrary edge. It is obvious that using this strategy
we can only lose (i.e. create a triangle) if G contains a triangle with edges x1, x2, x3

such that their respective pairings in π also belong to triangles in G. The number of
triangles in G is whp of order n3p3, and therefore the probability of having a triangle
whose three edges are paired in π with edges from triangles is at most of order

n3p3

(
n3p3

n2p

)3

= n6p9 = o(1).

It would be very interesting to obtain tight results for the offline small subgraph avoid-
ance version of the Achlioptas process for a wide variety of graphs H and parameter
r.

• The appearances of the giant component and of a fixed graph are just two instances
that have been addressed so far in the context of the Achlioptas process. Naturally, one
can consider other graph theoretic properties as well in this context. We hope to return
to questions of this type in the future.
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APPENDIX A: SUPPORTING RESULTS FOR AVOIDING Kt

In this section, we collect the supporting lemmas and inequalities that are used to prove
thresholds for avoiding Kt . Following a suggestion of the referee to shorten this paper, we
do not provide complete proofs of all of these results. Rather, we stop once each state-
ment has been reduced to an inequality in several variables. At that point, the remaining
analysis is not so interesting, because such statements can of course in theory be verified
(although efficient proofs of non-polynomial inequalities in up to eight variables are not
necessarily routine). The interested reader can find the complete proofs on the arXiv at
http://arxiv.org/abs/0708.0443.

Throughout the appendix, we will set s = �logr[(r − 1)t + 1]�. We begin by proving
some basic facts about s.

Lemma A.1. For fixed t ≥ 3, the parameter s is decreasing in r in the range r ≥ 2.

Proof. This follows by routine calculus, as it is not difficult to show that ∂f
∂r < 0.

Lemma A.2. If t ≥ 4 and r ≥ 2, then s ≤ t/2. Furthermore, if t ≥ 5 and r ≥ 2, or if
t = 4 and r ≥ 4, then s < t/2.

Proof. By Lemma A.1, if r ≥ 2, then s ≤ �log2(t + 1)�, and one may verify that this is in
turn ≤ t/2 for all t ≥ 4, and < t/2 for t ≥ 5. For the other range, when r ≥ 4, Lemma A.1
gives s ≤ �log4(3t + 1)�, which is less than t/2 at t = 4. This finishes the lemma.

1.1. Balanced Graphs and Extensions

Lemma A.3. For any t ≥ 4 and r ≥ 2, Kt \ se is a balanced graph.

Proof. We must show that the edge density (number of edges divided by number of
vertices) of Kt \ se is at least as large as the edge density of any of its proper induced
subgraphs. The edge density of Kt \ se is exactly [( t

2

) − s]/t. Lemma A.2 established that
s ≤ t/2, so the edge density is at least [( t

2

) − t
2 ]/t = (t−1

2

)
/(t − 1). Yet the final quantity

is precisely the edge density of Kt−1, which is an upper bound on the edge density of any
proper induced subgraph of any t-vertex graph, so we are done.

Lemma A.4. For any t ≥ 4 and r ≥ 2, Kt \ se has the balanced extension property.

Proof. Fix any graph G of the form Kt \ se, and let u, v be any two nonadjacent vertices
of G. We must show that the function e(H)/(v(H) − 2) is maximal at H = G, where H is
allowed to range over all induced subgraphs of G that contain {u, v}. For any graph H with n
vertices that is missing at least one edge (e.g., the edge between {u, v}), e(H)/(v(H)− 2) ≤
[(n

2

) − 1]/(n − 2) = (n + 1)/2. For any proper induced subgraph H ⊂ G, we then have
e(H)/(v(H) − 2) ≤ t/2.

Yet e(G)/(v(G)−2) = [( t
2

)−s]/(t −2), and Lemma A.2 established that s ≤ t/2. Using
this bound for s, we see that e(G)/(v(G) − 2) ≥ [( t

2

) − t
2 ]/(t − 2) = t/2, which matches

our upper bound for e(H)/(v(H) − 2), so we are done.
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Lemma A.5. Suppose that t ≥ 4. Let H1 = K� t
2 �,� t

2 �, and arbitrarily choose the rest of
the sequence {H2, H3, . . . , Hf }, where Hf = Kt, by adding one edge at a time. Then every
consecutive pair (Hk , Hk+1) is a balanced extension pair.

Proof. Consider a consecutive pair (Hk , Hk+1). By the construction, Hk contains a complete
bipartite subgraph that was H1; let V1 ∪ V2 be the corresponding partition of the vertex set.
Let u and v be the endpoints of the edge on which Hk and Hk+1 differ. Without loss of
generality, suppose that u, v ∈ V1. (They must lie in the same part because Hk already
contains all edges between V1 and V2.) Now, consider any subsets U1 ⊂ V1 and U2 ⊂ V2

such that u, v ∈ U1 and U1 ∪ U2 �= V1 ∪ V2. Let H ′
k be the subgraph of Hk induced by

U1 ∪ U2. It suffices to show that e(Hk)/(v(Hk) − 2) ≥ e(H ′
k)/(v(H

′
k) − 2).

Let us denote u1 = |U1|, u2 = |U2|, and let e1 and e2 be the respective numbers of
edges of Hk spanned by U1 and by U2. Since the number of edges between V1 and V2 is
� t

2�� t
2� = � t2

4 �, the number of edges in Hk is at least e1 + e2 + � t2

4 �. On the other hand,
the number of edges in H ′

k is precisely e1 + e2 + u1u2. Thus, the result follows from the
inequality below (proved in the full version):

e1 + e2 +
⌊

t2

4

⌋
t − 2

≥ e1 + e2 + u1u2

u1 + u2 − 2
.

A.2. Inequalities

For the reader’s convenience, we reproduce the definitions of the parameters s and θ :

s = �logr[(r − 1)t + 1]�, θ = rs(t − 2) + 2

rs
[( t

2

) − s
] + rs−1

r−1

.

The following inequalities are proved in the full version of this paper.

Inequality A.6. Suppose that either t ≥ 5 and r ≥ 2, or t = 4 and r ≥ 4. Then
−θ ≥ −� t

2�−1.

Inequality A.7. For any t ≥ 4 and r ≥ 2, if p � n−θ , then nt−2p( t
2)−s−1 is a positive

power of n.

Inequality A.8. Suppose that t ≥ 5 and r ≥ 2, or t = 4 and r ≥ 4. If p � n−θ , then
nt−2p( t

2)−s is a negative power of n.

APPENDIX B: SUPPORTING RESULTS FOR AVOIDING Kt ,t

Coincidentally, the definition of the parameter s is exactly the same for avoiding Kt and
avoiding Kt,t , so we can still use Lemmas A.1 and A.2 (which prove properties of s) in this
section. The specification of θ will be different, however. For the reader’s convenience, we
reproduce the definitions here.

s = �logr[(r − 1)t + 1]�, θ = rs(2t − 2) + 2

rs(t2 − s) + rs−1
r−1

.
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B.1. Balanced Graphs

Lemma B.1. For any t ≥ 3 and r ≥ 2, Kt,t \ se is a balanced graph, except in the
case when t = 3, r = 2, and the graph is K2,3 with a pendant edge. In that final case, if
p � n−18/31/ log n, the number of copies of that graph in Gm is still O(n6p7) wep.

Proof. We must show that the edge density (number of edges divided by number of
vertices) of Kt,t \ se is at least the edge density of any proper induced subgraph. The edge
density of the complete bipartite graph Ka,b is ab/(a + b), which is increasing in both a and
b, so the edge density of any proper induced subgraph of Kt,t \se is at most t(t −1)/(2t −1).
On the other hand, the edge density of Kt,t \ se is precisely (t2 − s)/(2t), so we must show
that

t(t − 1)

2t − 1
≤ t2 − s

2t
.

Clearing the denominators, this is equivalent to

2t3 − 2t2 ≤ 2t3 − t2 − s(2t − 1).

Rearranging terms, this is equivalent to

s ≤ t2

2t − 1
.

Now if t ≥ 4, Lemma A.2 bounds s ≤ t/2, which finishes the inequality.
The only remaining case is t = 3. However, Lemma A.1 established that the dependence

of s = �logr[(r − 1)t + 1]� on r was decreasing, so s = 1 for r ≥ 3, and s = 2 for r = 2.
One may manually verify that of all of the graphs of the form K3,3 \ e and K3,3 \ 2e, the
only one which is not balanced is the deletion from K3,3 of two edges incident to the same
vertex, which is K2,3 with a pendant edge, as claimed. Since that graph, which we denote
K2,3 + e, arises only when s = 2, this happens only when r = 2.

Now let us bound the number of copies of that graph in G(n, p), when p � n−θ / log n.
In the case t = 3, r = 2, we have θ = − 18

31 , and so n5p6, roughly the expected number
of copies of K2,3 in the random graph, is a positive power of n. So, since K2,3 is balanced,
Theorem 2.6 bounds the number of copies of K2,3 in Gm by O(n5p6) wep. Also, np is a
positive power of n, so we may bound all degrees by 2np wep. If both situations hold, we
may conclude that the number of copies of K2,3 +e is O(n5p6 ·np) = O(n6p7), as desired.

Lemma B.2. For any t ≥ 3 and r ≥ 2, Kt,t \ se has the balanced extension property.

Proof. Fix any graph G of the form Kt,t \ se, and let u, v be any two nonadjacent vertices
of G. We must show that the function e(H)/(v(H) − 2) is maximized at H = G, where H
is allowed to range over all proper induced subgraphs of G that contain {u, v}. Any such H
is still bipartite with respect to G’s bipartition; suppose that it has a vertices on one side
and b on the other. Since we assumed that H is missing at least the edge joining {u, v}, we
must have e(H)/(v(H) − 2) ≤ (ab − 1)/(a + b − 2). This is increasing in both a and b, so
its maximum over proper induced subgraphs H is [t(t − 1) − 1]/(2t − 3). Thus, the result
follows from the inequality below (proved in the full version):

t2 − s

2t − 2
≥ t(t − 1) − 1

2t − 3
.
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Lemma B.3. For any fixed positive integer k, consider the following 4-partite graph,
which we call H1. Let the parts be V1, V2, V3, V4, with |V1| = |V2| = k and |V3| = |V4| = 1,
and place edges such that (V1, V2), (V1, V4), and (V3, V2) are complete bipartite. There are
no more edges. Let H2 be obtained from H1 by adding the edge between V3 and V4. Then
(H1, H2) is a balanced extension pair.

Proof. Consider any subsets U1 ⊂ V1 and U2 ⊂ V2, and let H ′
1 be the subgraph of H1

induced by U1 ∪U2 ∪V3 ∪V4. We must show that e(H ′
1)/(v(H

′
1)−2) ≤ e(H1)/(v(H1)−2).

Let a = |U1| and b = |U2|. Then,
e(H ′

1)

v(H ′
1)−2

= ab+a+b
a+b = ab

a+b + 1, which is increasing in both

a and b. Therefore,
e(H ′

1)

v(H ′
1)−2

≤ k2+k+k
k+k = e(H1)

v(H1)−2 , and we are done.

Lemma B.4. Suppose that t is even and at least 4. Let H1 be the 4-partite graph with
parts V1, V2, V3, V4, each of size t/2, and edges such that (V1, V2), (V1, V4), and (V3, V2) are
complete bipartite. Let {H2, . . . , H1+(t/2)} be obtained by successively adding single edges
until H1+(t/2) has a perfect matching between V3 and V4. Then, arbitrarily choose the rest
of the sequence {H2+(t/2), . . . , Hf } by adding one edge at a time, until the final term is the
complete bipartite graph Kt,t with bipartition (V1 ∪ V3, V2 ∪ V4). Then every consecutive
pair (Hk , Hk+1) is a balanced extension pair.

The proof breaks into two cases, since there are two stages of edge addition. To give a
flavor of the argument, we show how to reduce one of the cases to an inequality in several
variables.

Proof of Lemma B.4 for k ≤ t/2. Consider a consecutive pair (Hk , Hk+1). By the construc-
tion, Hk has the following structure. The vertex set is partitioned into V1 ∪ V2 ∪ V3 ∪ V4,
with all parts of size t/2. The pairs (V1, V2), (V1, V4), and (V3, V2) are complete bipartite
graphs, and there is a (k − 1)-edge matching between V3 and V4. There are no other edges.
Also, there is a pair of vertices u ∈ V3, v ∈ V4, not involved in the (k − 1)-edge matching,
at which the addition of an edge creates Hk+1. Now consider any family of subsets Ui ⊂ Vi

such that u ∈ U3 and v ∈ U4. Let H ′
k be the subgraph of Hk induced by ∪Ui. We must show

that e(H ′
k)/(v(H

′
k) − 2) ≤ e(Hk)/(v(Hk) − 2).

For brevity, let a = |U1|, b = |U2|, c = |U3|, and d = |U4|. Since the edges between U3

and U4 form a matching of at most k − 1 edges which does not involve u ∈ U3 or v ∈ U4,
there can be at most min{c − 1, d − 1, k − 1} = min{c, d, k} − 1 edges there. Therefore,

e
(
H ′

k

)
v
(
H ′

k

) − 2
≤ ab + ad + cb + (min{c, d, k} − 1)

a + b + c + d − 2
.

The result follows by showing that the right hand side is at most
3
4 t2+(k−1)

2t−2 = e(Hk )

v(Hk )−2 , which
is done in the full version of this article.

Lemma B.5. Suppose that t is odd and at least 3. Let H1 be a 6-partite graph with parts
{Vi}6

1 such that V3 and V4 are singletons, and the other four parts each have size �t/2�. Let
there be edges be such that the two pairs (V1, V2) and (V5, V6) are each complete bipartite
graphs, let the vertex in V3 be adjacent to all of V2 ∪ V4 ∪ V6, and let the vertex in V4 be
adjacent to all of V1 ∪ V3 ∪ V5. There are no more edges.
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Let {H2, . . . , H1+�t/2�} be obtained by successively adding single edges until H1+�t/2� has
a perfect matching between V1 and V6. To create the next �t/2� graphs in the sequence, we
put down a matching between V5 and V2, one edge at a time. Finally, arbitrarily choose the
rest of the sequence {H2+2�t/2�, . . . , Hf } by adding one edge at a time, until the final term is
the complete bipartite graph Kt,t with bipartition (V1 ∪ V3 ∪ V5, V2 ∪ V4 ∪ V6).

Then every consecutive pair (Hk , Hk+1) is a balanced extension pair.

The proof breaks into three cases, since there are three stages of edge addition. To give a
flavor of the argument, we show how to reduce one of the cases to an inequality in several
variables.

Proof of Lemma B.5 for k > 2�t/2�. Consider a consecutive pair (Hk , Hk+1). By con-
struction, Hk has the following structure. The vertex set is partitioned into {Vi}6

1, with
|V3| = |V4| = 1 and all other |Vi| = �t/2�. The pairs (V1, V2) and (V5, V6) are each com-
plete bipartite graphs, the vertex in V3 is adjacent to all of V2 ∪ V4 ∪ V6, the vertex in V4 is
adjacent to all of V1 ∪ V3 ∪ V5, there is a perfect �t/2�-edge matching between V1 and V6,
and another perfect matching between V5 and V2. There may be some more edges as well
between V1 and V6 or between V5 and V2, but not all such edges are present: without loss of
generality, let us suppose that there are two vertices u ∈ V1 and v ∈ V6 such that there is no
edge between u and v. There are no more edges in the entire graph. Also, Hk+1 is obtained
from Hk by adding the edge joining u and v. Now, consider any family of subsets Ui ⊂ Vi

such that u ∈ U1 and v ∈ U6. Let H ′
k be the subgraph of Hk induced by ∪Ui. We must show

that e(H ′
k)/(v(H

′
k) − 2) ≤ e(Hk)/(v(Hk) − 2).

For brevity, let a = |U1|, b = |U2|, c = |U3|, d = |U4|, e = |U5|, and f = |U6|. Let E
be the number of edges in Hk between U1 and U6 or between U5 and U2. Then

e
(
H ′

k

)
v
(
H ′

k

) − 2
= ab + ef + c(b + f ) + (a + e)d + cd + E

a + b + c + d + e + f − 2
. (1)

Next, recall that Hk contained a perfect �t/2�-edge matching between V1 and V6, and between
V5 and V2. The maximum number of edges of these matchings that are included in E (i.e.,
go between U1 and U6, or between U5 and U2) is min{a, f }+min{b, e} ≤ (a+ f +b+e)/2.
Therefore, the number of edges in Hk between V1 and V6 or between V5 and V2 is at least
E + 2� t

2� − a+b+e+f
2 . The rest of the edges in Hk are easy to count: (V1, V2) and (V5, V6) are

complete bipartite subgraphs K�t/2�,�t/2�, the vertex in V3 is adjacent to all of V2 ∪ V4 ∪ V6,
and the vertex in V4 is adjacent to all of V1 ∪ V3 ∪ V5. Therefore,

e(Hk)

v(Hk) − 2
≥ 2

⌊
t
2

⌋2 + [
4

⌊
t
2

⌋ + 1
] + [

E + 2
⌊

t
2

⌋ − a+b+e+f
2

]
2t − 2

. (2)

The result follows by proving that the right hand side of (1) is at most the right hand side
of (2). The full version of this article contains the details.

B.2. Inequalities

The following inequalities are proved in the full version of this article.

Inequality B.6. Suppose that t ≥ 3 and r ≥ 2. Then −θ > − 2
t .
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Inequality B.7. For any t ≥ 3 and r ≥ 2, if p � n−θ , then n2t−2pt2−s−1 is a positive
power of n.

Inequality B.8. For any t ≥ 3 and r ≥ 2, if p � n−θ , then n2t−2pt2−s is a negative power
of n.
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[14] S. Janson, T. Łuczak, and A. Ruciński, Random graphs, Wiley, New York, 2000.

[15] T. Kövári, V. Sós, and P. Turán, On a problem of K. Zarankiewicz, Colloquium Math 3 (1954),
50–57.

[16] J. Spencer and N. Wormald, Birth control for giants, Combinatorica 27 (2007), 587–628.

[17] V. Vu, Concentration of non-Lipschitz functions and applications, Random Struct Algorithms
20 (2002), 262–316.

Random Structures and Algorithms DOI 10.1002/rsa


