PEER-TO-PEER CLUSTERING

Po-Shen Loh Carnegie Mellon University

Joint work with Eyal Lubetzky

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

QUESTION

Each of us has a number. How fast can we calculate the sum?

5 2 3 1 2 4 3	5	2	3	1	2	4	3	
---------------	---	---	---	---	---	---	---	--

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

QUESTION

Each of us has a number. How fast can we calculate the sum?

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ● ● ●

QUESTION

Each of us has a number. How fast can we calculate the sum?

MAIN ISSUE

- Creating the "clustering" tree may take a long time.
- Can it be done in a distributed manner?

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

- Clusters cannot have full knowledge of who is in other clusters.
- Basic operation: sample random atom.

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

Peer-to-peer context:

- Clusters cannot have full knowledge of who is in other clusters.
- Basic operation: sample random atom.
- Atoms keep track of their *parent*. If no parent, then atom is *root*.

Sac

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

- Clusters cannot have full knowledge of who is in other clusters.
- Basic operation: sample random atom.
- Atoms keep track of their *parent*. If no parent, then atom is *root*.

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

- Clusters cannot have full knowledge of who is in other clusters.
- Basic operation: sample random atom.
- Atoms keep track of their *parent*. If no parent, then atom is *root*.
- Clusters sampled proportional to size.

SIMPLEST PARALLELIZATION (D. MALKHI)

- Start with *n* clusters of size 1.
- Every round:
 - Each cluster flips coin to decide state: req or acc.
 - Each req cluster sends request to random cluster.
 - Each acc chooses random incoming request to merge.

- Clusters cannot have full knowledge of who is in other clusters.
- Basic operation: sample random atom.
- Atoms keep track of their *parent*. If no parent, then atom is *root*.
- Clusters sampled proportional to size.
- acc choose uniformly over incoming.

Empirical observation

In simulations, distributed protocol takes $O(\log n)$ time to finish.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

EMPIRICAL OBSERVATION

In simulations, distributed protocol takes $O(\log n)$ time to finish.

Challenge to analysis:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Empirical observation

In simulations, distributed protocol takes $O(\log n)$ time to finish.

Challenge to analysis:

• Singleton #1 sends request to #2 with probability $\frac{1}{n}$.

Empirical observation

In simulations, distributed protocol takes $O(\log n)$ time to finish.

Challenge to analysis:

- Singleton #1 sends request to #2 with probability $\frac{1}{n}$.
- Number of pairs of singletons is $(\sqrt{n})^2$.
- Each round, only constant number of singletons merge.
- Running time could be *polynomial*.

If requesters contact *uniformly random* clusters, then the process completes in $O(\log n)$ rounds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

If requesters contact *uniformly random* clusters, then the process completes in $O(\log n)$ rounds.

Sketch: Let κ be number of clusters.

- Each cluster receives $Bin[\kappa, \frac{1}{2\kappa}]$ requests.
- $\bullet\,$ Number of clusters reduces by constant factor every round. $\Box\,$

If requesters contact *uniformly random* clusters, then the process completes in $O(\log n)$ rounds.

Sketch: Let κ be number of clusters.

- Each cluster receives $Bin[\kappa, \frac{1}{2\kappa}]$ requests.
- Number of clusters reduces by constant factor every round. \Box

ANALOGY TO CONNECTIVITY IN GRAPH PROCESSES

- Above: Merge two uniformly sampled components.
- Erdős-Rényi: Sample two components, proportional to size.

If requesters contact *uniformly random* clusters, then the process completes in $O(\log n)$ rounds.

Sketch: Let κ be number of clusters.

- Each cluster receives $Bin[\kappa, \frac{1}{2\kappa}]$ requests.
- Number of clusters reduces by constant factor every round. \Box

ANALOGY TO CONNECTIVITY IN GRAPH PROCESSES

- Above: Merge two uniformly sampled components.
- Erdős-Rényi: Sample two components, proportional to size.
- **Peer-to-peer clustering:** Sample one uniform component, and one proportional to size.

Previous bounds

The distributed protocol finishes in $O(\sqrt{n})$ time, and takes at least $\log_2 n$ time.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Previous bounds

The distributed protocol finishes in $O(\sqrt{n})$ time, and takes at least $\log_2 n$ time.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Conjecture (Schramm)

The distributed protocol takes $\omega(\log n)$ time to complete.

Previous bounds

The distributed protocol finishes in $O(\sqrt{n})$ time, and takes at least $\log_2 n$ time.

CONJECTURE (SCHRAMM)

The distributed protocol takes $\omega(\log n)$ time to complete.

THEOREM (L., LUBETZKY)

The distributed protocol takes at least $\log n \cdot \frac{\log \log n}{\log \log \log n}$ time *whp*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Size-biased protocol

THEOREM (L., LUBETZKY)

If accepters choose their *smallest* incoming request,^{*} then the process completes in $O(\log n)$ rounds *whp*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

ignoring requests from clusters larger than themselves

If accepters choose their *smallest* incoming request,^{*} then the process completes in $O(\log n)$ rounds *whp*.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

* ignoring requests from clusters larger than themselves

If accepters choose their *smallest* incoming request,^{*} then the process completes in $O(\log n)$ rounds *whp*.

* ignoring requests from clusters larger than themselves

Implementation details:

• Roots know their cluster size.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If accepters choose their *smallest* incoming request,^{*} then the process completes in $O(\log n)$ rounds *whp*.

* ignoring requests from clusters larger than themselves

Implementation details:

- Roots know their cluster size.
- Add at merge, pass to new root.

If accepters choose their *smallest* incoming request,^{*} then the process completes in $O(\log n)$ rounds *whp*.

* ignoring requests from clusters larger than themselves

Implementation details:

- Roots know their cluster size.
- Add at merge, pass to new root.

Remarks

- Easier to select smallest incoming, rather than uniform.
- Size-biased protocol faster in practice as well.

CHALLENGE

Tracking the number of clusters alone is not enough. Also need control over the cluster size distribution.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

CHALLENGE

Tracking the number of clusters alone is not enough. Also need control over the cluster size distribution.

DEFINITION

Normalized sizes c_1, \ldots, c_{κ} ; let the *susceptibility* be $\chi = \sum c_i^2$.

Remarks:

• This is the expected size of the cluster containing a uniformly sampled atom; the initial value of χ is $\frac{1}{\kappa}$.

CHALLENGE

Tracking the number of clusters alone is not enough. Also need control over the cluster size distribution.

DEFINITION

Normalized sizes c_1, \ldots, c_{κ} ; let the *susceptibility* be $\chi = \sum c_i^2$.

Remarks:

- This is the expected size of the cluster containing a uniformly sampled atom; the initial value of χ is $\frac{1}{\kappa}$.
- In the Erdős-Rényi random graph process, adding an edge typically increases χ by:

CHALLENGE

Tracking the number of clusters alone is not enough. Also need control over the cluster size distribution.

DEFINITION

Normalized sizes c_1, \ldots, c_{κ} ; let the susceptibility be $\chi = \sum c_i^2$.

Remarks:

- This is the expected size of the cluster containing a uniformly sampled atom; the initial value of χ is $\frac{1}{\kappa}$.
- In the Erdős-Rényi random graph process, adding an edge typically increases χ by:

CLAIM

The susceptibility does not grow beyond (constant) $\times \frac{1}{\kappa}$.

Idea:

• A cluster which becomes too large receives many requests.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

CLAIM

The susceptibility does not grow beyond (constant) $\times \frac{1}{\kappa}$.

Idea:

- A cluster which becomes too large receives many requests.
- Conditioned on their number, the incoming requests at a given cluster are uniformly distributed over all clusters.
- Larger clusters have higher probability of receiving a very small cluster, so they grow more slowly.

CLAIM

The susceptibility does not grow beyond (constant) $\times \frac{1}{\kappa}$.

Idea:

- A cluster which becomes too large receives many requests.
- Conditioned on their number, the incoming requests at a given cluster are uniformly distributed over all clusters.
- Larger clusters have higher probability of receiving a very small cluster, so they grow more slowly.

(ロ)、(国)、(E)、(E)、(E)、(O)へ(C)

CLAIM

About $\frac{1}{\chi\kappa}$ -fraction of clusters merge at each round.

CLAIM

The susceptibility does not grow beyond (constant) $\times \frac{1}{\kappa}$.

Idea:

- A cluster which becomes too large receives many requests.
- Conditioned on their number, the incoming requests at a given cluster are uniformly distributed over all clusters.
- Larger clusters have higher probability of receiving a very small cluster, so they grow more slowly.

CLAIM

About $\frac{1}{\chi\kappa}$ -fraction of clusters merge at each round.

Idea:

 $\bullet\,$ If χ is bounded, there can be large clusters, but only few.

• Distribution is leveled (controlled by χ).

TECHNICAL INGREDIENTS

Problem:

• Susceptibility is not bounded by $O(\frac{1}{\kappa})$.

<□> <圖> < ≧> < ≧> < ≧> < ≧ < つへぐ

TECHNICAL INGREDIENTS

Problem:

- Susceptibility is not bounded by $O(\frac{1}{\kappa})$.
- Carefully define event *E* such that on the level of expectation:
 - On \underline{E} , $\chi\kappa$ drops.
 - On \overline{E} , $\chi\kappa$ doesn't grow much, but κ shrinks by a constant factor.

• Track potential function: $\chi \kappa + 10^7 \log \kappa$.

TECHNICAL INGREDIENTS

Problem:

- Susceptibility is not bounded by $O(\frac{1}{\kappa})$.
- Carefully define event *E* such that on the level of expectation:
 - On \underline{E} , $\chi\kappa$ drops.
 - On \overline{E} , $\chi\kappa$ doesn't grow much, but κ shrinks by a constant factor.
- Track potential function: $\chi \kappa + 10^7 \log \kappa$.

Tools:

• Talagrand's concentration inequality for *certifiable* random variables on product spaces.

- Optional Stopping Theorem for martingales.
- Freedman's L^2 martingale tail inequality.

PROOF TECHNIQUES FOR ORIGINAL PROTOCOL

CHALLENGE

Evolution of susceptibility depends on more than its previous value.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

PROOF TECHNIQUES FOR ORIGINAL PROTOCOL

CHALLENGE

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

$$L(s) = \frac{1}{\kappa} \sum e^{-c_i s}.$$

CHALLENGE

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

$$L(s) = rac{1}{\kappa} \sum e^{-c_i s}.$$

Let $\ell_t(s)$ be $L(\kappa s)$ after *t*-th round. Then $1 - \ell_t(\frac{1}{2})$ is rate of clustering.

CHALLENGE

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

$$L(s) = \frac{1}{\kappa} \sum e^{-c_i s}.$$

Let $\ell_t(s)$ be $L(\kappa s)$ after *t*-th round. Then $1 - \ell_t(\frac{1}{2})$ is rate of clustering.

$$\ell_0(s) = e^{-s}$$

 $\ell_{t+1}(s) = \ldots$ depends only on 3 evaluations of $\ell_t(\cdot) \ldots$

CHALLENGE

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

$$L(s) = \frac{1}{\kappa} \sum e^{-c_i s}.$$

Let $\ell_t(s)$ be $L(\kappa s)$ after *t*-th round. Then $1 - \ell_t(\frac{1}{2})$ is rate of clustering.

$$\ell_{0}(s) = e^{-s} \\ \ell_{t+1}(s) = \frac{1}{1 + \ell_{t}(\frac{1}{2})} \begin{bmatrix} \ell_{t}\left(s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2}\right)^{2} - \ell_{t}\left(s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2}\right) \ell_{t}\left(\frac{1}{2} + s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2}\right) \\ + \ell_{t}\left(\frac{1}{2} + s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2}\right) + \ell_{t}\left(\frac{1}{2}\right) \ell_{t}\left(s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2}\right) \end{bmatrix}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへ⊙

CONVEXITY

RE-INTERPRETATION

• Show by induction: the functions $\ell_t(\cdot)$ are convex combinations of negative exponentials.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Re-INTERPRETATION

- Show by induction: the functions $\ell_t(\cdot)$ are convex combinations of negative exponentials.
- Rewrite the recursion for ℓ_{t+1}(·) as a weighted arithmetic mean of two evaluations of ℓ_t(·).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● のへで

Re-INTERPRETATION

- Show by induction: the functions $\ell_t(\cdot)$ are convex combinations of negative exponentials.
- Rewrite the recursion for ℓ_{t+1}(·) as a weighted arithmetic mean of two evaluations of ℓ_t(·).

Therefore, $\ell_t(\frac{1}{2})$ always rises by some tangible amount.

- The simplest parallelization of the centralized clustering protocol is not optimal.
- The next-simplest, where accepters choose their *smallest* incoming request, achieves optimal performance.
- We demonstrate the usefulness of: susceptibility, Laplace transform.

- The simplest parallelization of the centralized clustering protocol is not optimal.
- The next-simplest, where accepters choose their *smallest* incoming request, achieves optimal performance.
- We demonstrate the usefulness of: susceptibility, Laplace transform.

QUESTION

What is the true behavior of the original protocol?

- The simplest parallelization of the centralized clustering protocol is not optimal.
- The next-simplest, where accepters choose their *smallest* incoming request, achieves optimal performance.
- We demonstrate the usefulness of: susceptibility, Laplace transform.

QUESTION

What is the true behavior of the original protocol?

Empirical results

For $n = 10^6 \approx 2^{20}$, original protocol takes 135 rounds, while size-biased protocol takes 75 rounds.

- The simplest parallelization of the centralized clustering protocol is not optimal.
- The next-simplest, where accepters choose their *smallest* incoming request, achieves optimal performance.
- We demonstrate the usefulness of: susceptibility, Laplace transform, and theoreticians!

QUESTION

What is the true behavior of the original protocol?

Empirical results

For $n = 10^6 \approx 2^{20}$, original protocol takes 135 rounds, while size-biased protocol takes 75 rounds.