
Peer-to-peer clustering

Po-Shen Loh
Carnegie Mellon University

Joint work with Eyal Lubetzky

How to add

Question

Each of us has a number. How fast can we calculate the sum?

5 2 3 1 2 4 3 5

Main issue

Creating the “clustering” tree may take a long time.

Can it be done in a distributed manner?

How to add

Question

Each of us has a number. How fast can we calculate the sum?

5 2 3 1 2 4 3 5

11 14

25

7 4 6 8

lo
g

n

2

Main issue

Creating the “clustering” tree may take a long time.

Can it be done in a distributed manner?

How to add

Question

Each of us has a number. How fast can we calculate the sum?

5 2 3 1 2 4 3 5

11 14

25

7 4 6 8

lo
g

n

2

Main issue

Creating the “clustering” tree may take a long time.

Can it be done in a distributed manner?

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.

Clustering protocol

Empirical observation

In simulations, distributed protocol takes O(log n) time to finish.

Challenge to analysis:

n −
√

n

Singleton #1 sends request to #2 with probability 1
n .

Number of pairs of singletons is (
√

n)2.

Each round, only constant number of singletons merge.

Running time could be polynomial.

Clustering protocol

√
n

1 1 1 1 1 1 1 1

Empirical observation

In simulations, distributed protocol takes O(log n) time to finish.

Challenge to analysis:

n −
√

n

Singleton #1 sends request to #2 with probability 1
n .

Number of pairs of singletons is (
√

n)2.

Each round, only constant number of singletons merge.

Running time could be polynomial.

Clustering protocol

√
n

1 1 1 1 1 1 1 1

Empirical observation

In simulations, distributed protocol takes O(log n) time to finish.

Challenge to analysis:

n −
√

n

Singleton #1 sends request to #2 with probability 1
n .

Number of pairs of singletons is (
√

n)2.

Each round, only constant number of singletons merge.

Running time could be polynomial.

Clustering protocol

√
n

1 1 1 1 1 1 1 1

Empirical observation

In simulations, distributed protocol takes O(log n) time to finish.

Challenge to analysis:

n −
√

n

Singleton #1 sends request to #2 with probability 1
n .

Number of pairs of singletons is (
√

n)2.

Each round, only constant number of singletons merge.

Running time could be polynomial.

Related processes

Random-Mate algorithm

If requesters contact uniformly random clusters, then the process
completes in O(log n) rounds.

Sketch: Let κ be number of clusters.

Each cluster receives Bin
[
κ, 1

2κ

]
requests.

Number of clusters reduces by constant factor every round. �

Analogy to connectivity in graph processes

Above: Merge two uniformly sampled components.

Erdős-Rényi: Sample two components, proportional to size.

Peer-to-peer clustering: Sample one uniform component,
and one proportional to size.

Related processes

Random-Mate algorithm

If requesters contact uniformly random clusters, then the process
completes in O(log n) rounds.

Sketch: Let κ be number of clusters.

Each cluster receives Bin
[
κ, 1

2κ

]
requests.

Number of clusters reduces by constant factor every round. �

Analogy to connectivity in graph processes

Above: Merge two uniformly sampled components.

Erdős-Rényi: Sample two components, proportional to size.

Peer-to-peer clustering: Sample one uniform component,
and one proportional to size.

Related processes

Random-Mate algorithm

If requesters contact uniformly random clusters, then the process
completes in O(log n) rounds.

Sketch: Let κ be number of clusters.

Each cluster receives Bin
[
κ, 1

2κ

]
requests.

Number of clusters reduces by constant factor every round. �

Analogy to connectivity in graph processes

Above: Merge two uniformly sampled components.

Erdős-Rényi: Sample two components, proportional to size.

Peer-to-peer clustering: Sample one uniform component,
and one proportional to size.

Related processes

Random-Mate algorithm

If requesters contact uniformly random clusters, then the process
completes in O(log n) rounds.

Sketch: Let κ be number of clusters.

Each cluster receives Bin
[
κ, 1

2κ

]
requests.

Number of clusters reduces by constant factor every round. �

Analogy to connectivity in graph processes

Above: Merge two uniformly sampled components.

Erdős-Rényi: Sample two components, proportional to size.

Peer-to-peer clustering: Sample one uniform component,
and one proportional to size.

Results

Previous bounds

The distributed protocol finishes in O(
√

n) time, and takes at least
log2 n time.

Conjecture (Schramm)

The distributed protocol takes ω(log n) time to complete.

Theorem (L., Lubetzky)

The distributed protocol takes at least log n · log log n
log log log n time whp.

Results

Previous bounds

The distributed protocol finishes in O(
√

n) time, and takes at least
log2 n time.

Conjecture (Schramm)

The distributed protocol takes ω(log n) time to complete.

Theorem (L., Lubetzky)

The distributed protocol takes at least log n · log log n
log log log n time whp.

Results

Previous bounds

The distributed protocol finishes in O(
√

n) time, and takes at least
log2 n time.

Conjecture (Schramm)

The distributed protocol takes ω(log n) time to complete.

Theorem (L., Lubetzky)

The distributed protocol takes at least log n · log log n
log log log n time whp.

Size-biased protocol

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗
ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.

Size-biased protocol

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗ ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.

Size-biased protocol

6
23

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗ ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.

Size-biased protocol

29

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗ ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.

Size-biased protocol

29

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗ ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.

Proof techniques

Challenge

Tracking the number of clusters alone is not enough.
Also need control over the cluster size distribution.

Definition

Normalized sizes c1, . . . , cκ; let the susceptibility be χ =
∑

c2
i .

Remarks:

This is the expected size of the cluster containing a uniformly
sampled atom; the initial value of χ is 1

κ .
In the Erdős-Rényi random graph process, adding an edge
typically increases χ by:

a
b

∆χ = (a + b)2 − a2 − b2 = 2ab

≈ 2χ2.

Proof techniques

Challenge

Tracking the number of clusters alone is not enough.
Also need control over the cluster size distribution.

Definition

Normalized sizes c1, . . . , cκ; let the susceptibility be χ =
∑

c2
i .

Remarks:

This is the expected size of the cluster containing a uniformly
sampled atom; the initial value of χ is 1

κ .

In the Erdős-Rényi random graph process, adding an edge
typically increases χ by:

a
b

∆χ = (a + b)2 − a2 − b2 = 2ab

≈ 2χ2.

Proof techniques

Challenge

Tracking the number of clusters alone is not enough.
Also need control over the cluster size distribution.

Definition

Normalized sizes c1, . . . , cκ; let the susceptibility be χ =
∑

c2
i .

Remarks:

This is the expected size of the cluster containing a uniformly
sampled atom; the initial value of χ is 1

κ .
In the Erdős-Rényi random graph process, adding an edge
typically increases χ by:

a
b

∆χ = (a + b)2 − a2 − b2 = 2ab

≈ 2χ2.

Proof techniques

Challenge

Tracking the number of clusters alone is not enough.
Also need control over the cluster size distribution.

Definition

Normalized sizes c1, . . . , cκ; let the susceptibility be χ =
∑

c2
i .

Remarks:

This is the expected size of the cluster containing a uniformly
sampled atom; the initial value of χ is 1

κ .
In the Erdős-Rényi random graph process, adding an edge
typically increases χ by:

a
b

∆χ = (a + b)2 − a2 − b2 = 2ab ≈ 2χ2.

Intuition for size-biased protocol

Claim

The susceptibility does not grow beyond (constant)× 1
κ .

Idea:

A cluster which becomes too large receives many requests.

Conditioned on their number, the incoming requests at a
given cluster are uniformly distributed over all clusters.

Larger clusters have higher probability of receiving a very
small cluster, so they grow more slowly.

Claim

About 1
χκ -fraction of clusters merge at each round.

Idea:

If χ is bounded, there can be large clusters, but only few.

Distribution is leveled (controlled by χ).

Intuition for size-biased protocol

Claim

The susceptibility does not grow beyond (constant)× 1
κ .

Idea:

A cluster which becomes too large receives many requests.

Conditioned on their number, the incoming requests at a
given cluster are uniformly distributed over all clusters.

Larger clusters have higher probability of receiving a very
small cluster, so they grow more slowly.

Claim

About 1
χκ -fraction of clusters merge at each round.

Idea:

If χ is bounded, there can be large clusters, but only few.

Distribution is leveled (controlled by χ).

Intuition for size-biased protocol

Claim

The susceptibility does not grow beyond (constant)× 1
κ .

Idea:

A cluster which becomes too large receives many requests.

Conditioned on their number, the incoming requests at a
given cluster are uniformly distributed over all clusters.

Larger clusters have higher probability of receiving a very
small cluster, so they grow more slowly.

Claim

About 1
χκ -fraction of clusters merge at each round.

Idea:

If χ is bounded, there can be large clusters, but only few.

Distribution is leveled (controlled by χ).

Intuition for size-biased protocol

Claim

The susceptibility does not grow beyond (constant)× 1
κ .

Idea:

A cluster which becomes too large receives many requests.

Conditioned on their number, the incoming requests at a
given cluster are uniformly distributed over all clusters.

Larger clusters have higher probability of receiving a very
small cluster, so they grow more slowly.

Claim

About 1
χκ -fraction of clusters merge at each round.

Idea:

If χ is bounded, there can be large clusters, but only few.

Distribution is leveled (controlled by χ).

Technical ingredients

Problem:

Susceptibility is not bounded by O
(

1
κ

)
.

Carefully define event E such that on the level of expectation:

On E , χκ drops.
On E , χκ doesn’t grow much, but κ shrinks by a constant
factor.

Track potential function: χκ+ 107 log κ.

Tools:

Talagrand’s concentration inequality for certifiable random
variables on product spaces.

Optional Stopping Theorem for martingales.

Freedman’s L2 martingale tail inequality.

Technical ingredients

Problem:

Susceptibility is not bounded by O
(

1
κ

)
.

Carefully define event E such that on the level of expectation:

On E , χκ drops.
On E , χκ doesn’t grow much, but κ shrinks by a constant
factor.

Track potential function: χκ+ 107 log κ.

Tools:

Talagrand’s concentration inequality for certifiable random
variables on product spaces.

Optional Stopping Theorem for martingales.

Freedman’s L2 martingale tail inequality.

Technical ingredients

Problem:

Susceptibility is not bounded by O
(

1
κ

)
.

Carefully define event E such that on the level of expectation:

On E , χκ drops.
On E , χκ doesn’t grow much, but κ shrinks by a constant
factor.

Track potential function: χκ+ 107 log κ.

Tools:

Talagrand’s concentration inequality for certifiable random
variables on product spaces.

Optional Stopping Theorem for martingales.

Freedman’s L2 martingale tail inequality.

Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of

clustering.

`0(s) = e−s

`t+1(s) =

1

1 + `t(1
2)

 `t

s ·

1+`t (1
2

)

2

!2

− `t

s ·

1+`t (1
2

)

2

!
`t

1
2

+ s ·
1+`t (1

2
)

2

!

+`t

1
2

+ s ·
1+`t (1

2
)

2

!
+ `t

“
1
2

”
`t

s ·

1+`t (1
2

)

2

!


Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of

clustering.

`0(s) = e−s

`t+1(s) =

1

1 + `t(1
2)

 `t

s ·

1+`t (1
2

)

2

!2

− `t

s ·

1+`t (1
2

)

2

!
`t

1
2

+ s ·
1+`t (1

2
)

2

!

+`t

1
2

+ s ·
1+`t (1

2
)

2

!
+ `t

“
1
2

”
`t

s ·

1+`t (1
2

)

2

!


Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of

clustering.

`0(s) = e−s

`t+1(s) =

1

1 + `t(1
2)

 `t

s ·

1+`t (1
2

)

2

!2

− `t

s ·

1+`t (1
2

)

2

!
`t

1
2

+ s ·
1+`t (1

2
)

2

!

+`t

1
2

+ s ·
1+`t (1

2
)

2

!
+ `t

“
1
2

”
`t

s ·

1+`t (1
2

)

2

!


Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of

clustering.

`0(s) = e−s

`t+1(s) =

1

1 + `t(1
2)

 `t

s ·

1+`t (1
2

)

2

!2

− `t

s ·

1+`t (1
2

)

2

!
`t

1
2

+ s ·
1+`t (1

2
)

2

!

+`t

1
2

+ s ·
1+`t (1

2
)

2

!
+ `t

“
1
2

”
`t

s ·

1+`t (1
2

)

2

!


. . . depends only on 3 evaluations of `t(·) . . .

Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of

clustering.

`0(s) = e−s

`t+1(s) =
1

1 + `t(1
2)

 `t

s ·

1+`t (1
2

)

2

!2

− `t

s ·

1+`t (1
2

)

2

!
`t

1
2

+ s ·
1+`t (1

2
)

2

!

+`t

1
2

+ s ·
1+`t (1

2
)

2

!
+ `t

“
1
2

”
`t

s ·

1+`t (1
2

)

2

!


Convexity

`t(s)

s

1

Re-interpretation

Show by induction: the functions `t(·) are convex
combinations of negative exponentials.

Rewrite the recursion for `t+1(·) as a weighted arithmetic
mean of two evaluations of `t(·).

Therefore, `t(1
2) always rises by some tangible amount.

Convexity

`t(s)

s

1

`t+1(1
2)

Re-interpretation

Show by induction: the functions `t(·) are convex
combinations of negative exponentials.

Rewrite the recursion for `t+1(·) as a weighted arithmetic
mean of two evaluations of `t(·).

Therefore, `t(1
2) always rises by some tangible amount.

Convexity

`t(s)

s

1

1/2

`t(1
2)

`t+1(1
2)

Re-interpretation

Show by induction: the functions `t(·) are convex
combinations of negative exponentials.

Rewrite the recursion for `t+1(·) as a weighted arithmetic
mean of two evaluations of `t(·).

Therefore, `t(1
2) always rises by some tangible amount.

Concluding remarks

Main contributions.

The simplest parallelization of the centralized clustering
protocol is not optimal.

The next-simplest, where accepters choose their smallest
incoming request, achieves optimal performance.

We demonstrate the usefulness of: susceptibility, Laplace
transform.

, and theoreticians!

Question

What is the true behavior of the original protocol?

Empirical results

For n = 106 ≈ 220, original protocol takes 135 rounds, while
size-biased protocol takes 75 rounds.

Concluding remarks

Main contributions.

The simplest parallelization of the centralized clustering
protocol is not optimal.

The next-simplest, where accepters choose their smallest
incoming request, achieves optimal performance.

We demonstrate the usefulness of: susceptibility, Laplace
transform.

, and theoreticians!

Question

What is the true behavior of the original protocol?

Empirical results

For n = 106 ≈ 220, original protocol takes 135 rounds, while
size-biased protocol takes 75 rounds.

Concluding remarks

Main contributions.

The simplest parallelization of the centralized clustering
protocol is not optimal.

The next-simplest, where accepters choose their smallest
incoming request, achieves optimal performance.

We demonstrate the usefulness of: susceptibility, Laplace
transform.

, and theoreticians!

Question

What is the true behavior of the original protocol?

Empirical results

For n = 106 ≈ 220, original protocol takes 135 rounds, while
size-biased protocol takes 75 rounds.

Concluding remarks

Main contributions.

The simplest parallelization of the centralized clustering
protocol is not optimal.

The next-simplest, where accepters choose their smallest
incoming request, achieves optimal performance.

We demonstrate the usefulness of: susceptibility, Laplace
transform, and theoreticians!

Question

What is the true behavior of the original protocol?

Empirical results

For n = 106 ≈ 220, original protocol takes 135 rounds, while
size-biased protocol takes 75 rounds.

	Presentation
	Introduction
	How to add
	Original protocol
	Observed performance
	Connection with Gnp

	Results
	Results
	Size-biased protocol

	Proof techniques
	Proof techniques
	Intuition for size-biased
	Under the hood for size-biased
	Main ingredient for original protocol
	Key observation, lower bound

	Conclusion
	Concluding remarks

