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Creating the “clustering” tree may take a long time.
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Clustering protocol

Simplest parallelization (D. Malkhi)

Start with n clusters of size 1.

Every round:

Each cluster flips coin to decide state: req or acc.
Each req cluster sends request to random cluster.
Each acc chooses random incoming request to merge.

Peer-to-peer context:

Clusters cannot have full knowledge of who is in other clusters.

Basic operation: sample random atom.

Atoms keep track of their parent.
If no parent, then atom is root.

Clusters sampled proportional to size.

acc choose uniformly over incoming.
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Clustering protocol

Empirical observation

In simulations, distributed protocol takes O(log n) time to finish.

Challenge to analysis:

n −
√

n

Singleton #1 sends request to #2 with probability 1
n .

Number of pairs of singletons is (
√

n)2.

Each round, only constant number of singletons merge.

Running time could be polynomial.
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Related processes

Random-Mate algorithm

If requesters contact uniformly random clusters, then the process
completes in O(log n) rounds.

Sketch: Let κ be number of clusters.

Each cluster receives Bin
[
κ, 1

2κ

]
requests.

Number of clusters reduces by constant factor every round. �

Analogy to connectivity in graph processes

Above: Merge two uniformly sampled components.

Erdős-Rényi: Sample two components, proportional to size.

Peer-to-peer clustering: Sample one uniform component,
and one proportional to size.
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Results

Previous bounds

The distributed protocol finishes in O(
√

n) time, and takes at least
log2 n time.

Conjecture (Schramm)

The distributed protocol takes ω(log n) time to complete.

Theorem (L., Lubetzky)

The distributed protocol takes at least log n · log log n
log log log n time whp.
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Size-biased protocol

Theorem (L., Lubetzky)

If accepters choose their smallest incoming request,∗ then the
process completes in O(log n) rounds whp.

∗
ignoring requests from clusters larger than themselves

Implementation details:

Roots know their cluster size.

Add at merge, pass to new root.

Remarks

Easier to select smallest incoming, rather than uniform.

Size-biased protocol faster in practice as well.
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Proof techniques

Challenge

Tracking the number of clusters alone is not enough.
Also need control over the cluster size distribution.

Definition

Normalized sizes c1, . . . , cκ; let the susceptibility be χ =
∑

c2
i .

Remarks:

This is the expected size of the cluster containing a uniformly
sampled atom; the initial value of χ is 1

κ .
In the Erdős-Rényi random graph process, adding an edge
typically increases χ by:

a
b

∆χ = (a + b)2 − a2 − b2 = 2ab

≈ 2χ2.
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Intuition for size-biased protocol

Claim

The susceptibility does not grow beyond (constant)× 1
κ .

Idea:

A cluster which becomes too large receives many requests.

Conditioned on their number, the incoming requests at a
given cluster are uniformly distributed over all clusters.

Larger clusters have higher probability of receiving a very
small cluster, so they grow more slowly.

Claim

About 1
χκ -fraction of clusters merge at each round.

Idea:

If χ is bounded, there can be large clusters, but only few.

Distribution is leveled (controlled by χ).
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Technical ingredients

Problem:

Susceptibility is not bounded by O
(

1
κ

)
.

Carefully define event E such that on the level of expectation:

On E , χκ drops.
On E , χκ doesn’t grow much, but κ shrinks by a constant
factor.

Track potential function: χκ+ 107 log κ.

Tools:

Talagrand’s concentration inequality for certifiable random
variables on product spaces.

Optional Stopping Theorem for martingales.

Freedman’s L2 martingale tail inequality.
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Proof techniques for original protocol

Challenge

Evolution of susceptibility depends on more than its previous value.

Approach (Schramm)

Track all moments of size distribution, with Laplace transform:

L(s) =
1

κ

∑
e−ci s .

Let `t(s) be L(κs) after t-th round. Then 1− `t(1
2) is rate of
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. . . depends only on 3 evaluations of `t(·) . . .
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Convexity

`t(s)

s

1

Re-interpretation

Show by induction: the functions `t(·) are convex
combinations of negative exponentials.

Rewrite the recursion for `t+1(·) as a weighted arithmetic
mean of two evaluations of `t(·).

Therefore, `t(1
2) always rises by some tangible amount.
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Concluding remarks

Main contributions.

The simplest parallelization of the centralized clustering
protocol is not optimal.

The next-simplest, where accepters choose their smallest
incoming request, achieves optimal performance.

We demonstrate the usefulness of: susceptibility, Laplace
transform.

, and theoreticians!

Question

What is the true behavior of the original protocol?

Empirical results

For n = 106 ≈ 220, original protocol takes 135 rounds, while
size-biased protocol takes 75 rounds.
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