Po-Shen Loh Princeton University

Joint work with Benny Sudakov

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

For any t, there exists n such that every 2-coloring of the edges of K_n has a monochromatic copy of K_t .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For any t, there exists n such that every 2-coloring of the edges of K_n has a monochromatic copy of K_t .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

QUESTIONS:

• What if there may be arbitrarily many colors?

For any t, there exists n such that every 2-coloring of the edges of K_n has a monochromatic copy of K_t .

QUESTIONS:

• What if there may be arbitrarily many colors?

OBSERVATION:

Every edge can have a different color, so cannot guarantee monochromatic subgraphs.

For any t, there exists n such that every 2-coloring of the edges of K_n has a monochromatic copy of K_t .

QUESTIONS:

- What if there may be *arbitrarily* many colors?
- Then is there an n which guarantees a monochromatic copy of K_t or a rainbow copy of K_t?

OBSERVATION:

Every edge can have a different color, so cannot guarantee monochromatic subgraphs.

Erdős-Rado, 1950:

 $\forall t, \exists n \text{ s.t. any edge-coloring of the complete graph on \{1, \ldots, n\}$, with *arbitrarily* many colors, has a copy of K_t that is one of:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- monochromatic
- rainbow
- upper lexical
- lower lexical

Erdős-Rado, 1950:

 $\forall t, \exists n \text{ s.t. any edge-coloring of the complete graph on \{1, \ldots, n\}$, with *arbitrarily* many colors, has a copy of K_t that is one of:

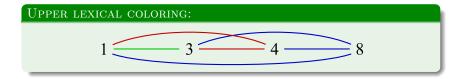
▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- monochromatic
- rainbow: all edges different colors
- upper lexical
- lower lexical

Erdős-Rado, 1950:

 $\forall t, \exists n \text{ s.t. any edge-coloring of the complete graph on {1,..., n}, with$ *arbitrarily* $many colors, has a copy of <math>K_t$ that is one of:

- monochromatic
- rainbow: all edges different colors
- upper lexical: color uniquely determined by larger endpoint
- lower lexical: color uniquely determined by smaller endpoint



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DEFINITION:

Constrained Ramsey number f(S, T) = minimum n such that every edge-coloring of K_n , with arbitrarily many colors, has one of:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- monochromatic copy of S
- rainbow copy of T

DEFINITION:

Constrained Ramsey number f(S, T) =minimum *n* such that every edge-coloring of K_n , with arbitrarily many colors, has one of:

- monochromatic copy of S
- rainbow copy of T

EXISTENCE:

By Canonical Ramsey Theorem, f(S, T) exists iff any sufficiently large lexical coloring also contains either a monochromatic S or a rainbow T.

DEFINITION:

Constrained Ramsey number f(S, T) = minimum n such that every edge-coloring of K_n , with arbitrarily many colors, has one of:

- monochromatic copy of S
- rainbow copy of T

EXISTENCE:

By Canonical Ramsey Theorem, f(S, T) exists iff any sufficiently large lexical coloring also contains either a monochromatic S or a rainbow T.

- Monochromatic subgraphs of lexical colorings are stars.
- Rainbow subgraphs of lexical colorings are forests.

DEFINITION:

Constrained Ramsey number f(S, T) = minimum n such that every edge-coloring of K_n , with arbitrarily many colors, has one of:

- monochromatic copy of S
- rainbow copy of T

EXISTENCE:

By Canonical Ramsey Theorem, f(S, T) exists iff any sufficiently large lexical coloring also contains either a monochromatic S or a rainbow T.

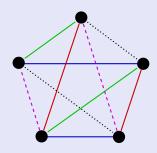
- Monochromatic subgraphs of lexical colorings are stars.
- Rainbow subgraphs of lexical colorings are forests.

Thus, f(S, T) exists iff S is a star or T is a forest.

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

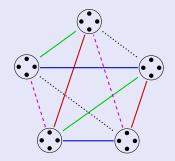
PROOF OF LOWER BOUND: $f(S, T) \ge \Omega(st)$



• Edge-color K_{t-2} with t-2 colors.

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

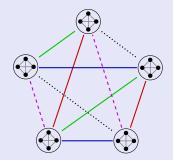
PROOF OF LOWER BOUND: $f(S, T) \ge \Omega(st)$



- Edge-color K_{t-2} with t-2 colors.
- Blow up each vtx by s/2 times.

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

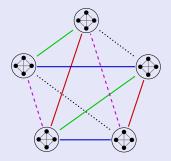
PROOF OF LOWER BOUND: $f(S, T) \ge \Omega(st)$



- Edge-color K_{t-2} with t 2 colors.
- Blow up each vtx by s/2 times.
- Edges between blow-ups inherit original color, and edges within blow-ups all get the same new color (t - 1).

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

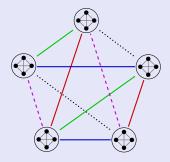
PROOF OF LOWER BOUND: $f(S, \overline{T}) \ge \Omega(st)$



- Edge-color K_{t-2} with t-2 colors.
- Blow up each vtx by s/2 times.
- Edges between blow-ups inherit original color, and edges within blow-ups all get the same new color (t 1).
- Monochrome subgraphs have $\leq s$ vtxs \Rightarrow no monochrome S.

We focus on f(S, T) when both S and T are trees with s and t edges, respectively.

PROOF OF LOWER BOUND: $f(S, \overline{T}) \ge \Omega(st)$



- Edge-color K_{t-2} with t-2 colors.
- Blow up each vtx by s/2 times.
- Edges between blow-ups inherit original color, and edges within blow-ups all get the same new color (t - 1).
- Monochrome subgraphs have $\leq s$ vtxs \Rightarrow no monochrome S.
- Only t 1 total colors \Rightarrow no rainbow T.

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.
- Conjecture: $f(S, T) \leq O(st)$, and f(S, T) is extremal when S and T are both paths.

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.
- Conjecture: $f(S, T) \leq O(st)$, and f(S, T) is extremal when S and T are both paths.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

WAGNER, 2006: $f(S, P_t) \leq O(s^2 t)$

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.
- Conjecture: $f(S, T) \leq O(st)$, and f(S, T) is extremal when S and T are both paths.

WAGNER, 2006: $f(S, P_t) \leq O(s^2 t)$

Proof method: (for contradiction, assume no monochromatic S)

• Find an induced subgraph in which most edges can be oriented, such that directed paths are always rainbow.

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.
- Conjecture: $f(S, T) \leq O(st)$, and f(S, T) is extremal when S and T are both paths.

WAGNER, 2006: $f(S, P_t) \leq O(s^2 t)$

Proof method: (for contradiction, assume no monochromatic S)

- Find an induced subgraph in which most edges can be oriented, such that directed paths are always rainbow.
- Find long directed paths in that induced subgraph, and string them together to contradict nonexistence of rainbow *t*-path.

JAMISON, JIANG, AND LING, 2003: $f(S, T) \leq O(st^2)$

- Proof by induction on diameter of T.
- Actually showed $f(S, T) \leq O(st \cdot diam(T))$.
- Conjecture: $f(S, T) \leq O(st)$, and f(S, T) is extremal when S and T are both paths.

WAGNER, 2006: $f(S, P_t) \leq O(s^2 t)$

Proof method: (for contradiction, assume no monochromatic S)

- Find an induced subgraph in which most edges can be oriented, such that directed paths are always rainbow.
- Find long directed paths in that induced subgraph, and string them together to contradict nonexistence of rainbow *t*-path.

MAJOR OPEN PROBLEM:

Find a sub-cubic upper bound for the diagonal case $f(P_t, P_t)$.

The constrained Ramsey number satisfies $f(S, P_t) \leq O(st \log t)$.

That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on $3600st \log t$ vertices.

The constrained Ramsey number satisfies $f(S, P_t) \leq O(st \log t)$.

That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on $3600st \log t$ vertices.

REMARKS:

 This is within a logarithmic factor of the previously mentioned lower bound f(S, T) ≥ Ω(st).

The constrained Ramsey number satisfies $f(S, P_t) \leq O(st \log t)$.

That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on $3600st \log t$ vertices.

REMARKS:

- This is within a logarithmic factor of the previously mentioned lower bound f(S, T) ≥ Ω(st).
- Proof significantly extends Wagner's idea of orienting edges such that directed paths are automatically rainbow.

The constrained Ramsey number satisfies $f(S, P_t) \leq O(st \log t)$.

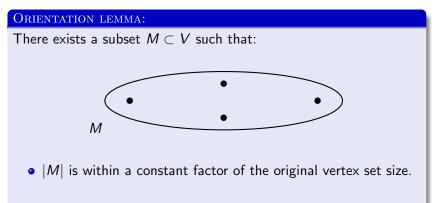
That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on $3600st \log t$ vertices.

REMARKS:

- This is within a logarithmic factor of the previously mentioned lower bound f(S, T) ≥ Ω(st).
- Proof significantly extends Wagner's idea of orienting edges such that directed paths are automatically rainbow.
- We use the concept of *median order* as an inductive tool, as introduced in Havet and Thomasse (2000).

The proof proceeds by contradiction; suppose that there is no monochromatic S and no rainbow t-path.

The proof proceeds by contradiction; suppose that there is no monochromatic S and no rainbow t-path. Then:



The proof proceeds by contradiction; suppose that there is no monochromatic S and no rainbow t-path. Then:

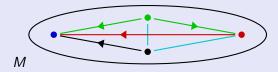
• |M| is within a constant factor of the original vertex set size.

• Each vertex $v \in M$ is associated with a unique color c_v .

The proof proceeds by contradiction; suppose that there is no monochromatic S and no rainbow t-path. Then:

ORIENTATION LEMMA:

There exists a subset $M \subset V$ such that:



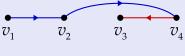
- |M| is within a constant factor of the original vertex set size.
- Each vertex $v \in M$ is associated with a unique color c_v .
- We may direct most of the edges in M such that if an edge is directed uv, then its color was cu.

Observation: directed paths are automatically rainbow.

Median order

DEFINITION:

Given a linear ordering $v_1 < v_2 < \cdots < v_n$ of the vertex set of a directed graph, an edge $\overrightarrow{v_i v_j}$ is called *forward* if i < j, and *backward* otherwise.



DEFINITION:

Given a linear ordering $v_1 < v_2 < \cdots < v_n$ of the vertex set of a directed graph, an edge $\overrightarrow{v_i v_j}$ is called *forward* if i < j, and *backward* otherwise.

A linear ordering which maximizes the number of forward edges is called a *median order*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

DEFINITION:

Given a linear ordering $v_1 < v_2 < \cdots < v_n$ of the vertex set of a directed graph, an edge $\overrightarrow{v_i v_j}$ is called *forward* if i < j, and *backward* otherwise.

A linear ordering which maximizes the number of forward edges is called a *median order*.

Remarks:

- Always exists, but not necessarily unique.
- Originally arose in theoretical computer science; NP-hard.

DEFINITION:

Given a linear ordering $v_1 < v_2 < \cdots < v_n$ of the vertex set of a directed graph, an edge $\overrightarrow{v_i v_j}$ is called *forward* if i < j, and *backward* otherwise.

A linear ordering which maximizes the number of forward edges is called a *median order*.

Remarks:

- Always exists, but not necessarily unique.
- Originally arose in theoretical computer science; NP-hard.
- Havet and Thomassé (2000) used median orders to give simple proofs of Dean's Conjecture, and Sumner's Conjecture for arborescences.

FEEDBACK PROPERTY

FORWARD BIAS (HELPS FIND DIRECTED PATHS):

Let $v_1 < \cdots < v_n$ be a median order. Then for every i < k,

among the edges between v_i and $\{v_{i+1}, \ldots, v_k\}$, there are at least as many forward edges as there are backward edges.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

FORWARD BIAS (HELPS FIND DIRECTED PATHS):

Let $v_1 < \cdots < v_n$ be a median order. Then for every i < k,

among the edges between v_i and $\{v_{i+1}, \ldots, v_k\}$, there are at least as many forward edges as there are backward edges.

Proof. Suppose this is false for some i < k, and backward edges outnumber forward edges in the picture.

• Consider the alternative ordering obtained by moving v_i to the position between v_k and v_{k+1} .

FORWARD BIAS (HELPS FIND DIRECTED PATHS):

Let $v_1 < \cdots < v_n$ be a median order. Then for every i < k,

among the edges between v_i and $\{v_{i+1}, \ldots, v_k\}$, there are at least as many forward edges as there are backward edges.

Proof. Suppose this is false for some i < k, and backward edges outnumber forward edges in the picture.

• Consider the alternative ordering obtained by moving v_i to the position between v_k and v_{k+1} .

 Edges that switch forward/backward are precisely those between v_i and {v_{i+1},..., v_k}.

FORWARD BIAS (HELPS FIND DIRECTED PATHS):

Let $v_1 < \cdots < v_n$ be a median order. Then for every i < k,

among the edges between v_i and $\{v_{i+1}, \ldots, v_k\}$, there are at least as many forward edges as there are backward edges.

Proof. Suppose this is false for some i < k, and backward edges outnumber forward edges in the picture.

- Consider the alternative ordering obtained by moving v_i to the position between v_k and v_{k+1} .
- Edges that switch forward/backward are precisely those between v_i and {v_{i+1},..., v_k}.
- But this increases the total number of forward edges in the graph, contradicting the maximality of the median order.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

SUMMARY OF RESULTS:

- The constrained Ramsey number $f(S, P_t)$ is upper bounded by $O(st \log t)$.
- That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on 3600st log t vertices.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

• This improves the previous bounds of $O(st^2)$ and $O(s^2t)$.

SUMMARY OF RESULTS:

- The constrained Ramsey number f(S, P_t) is upper bounded by O(st log t).
- That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on 3600st log t vertices.
- This improves the previous bounds of $O(st^2)$ and $O(s^2t)$.

OPEN PROBLEMS:

 Remove the logarithmic term that separates our bound from the simple lower bound f(S, T) ≥ Ω(st). We believe that it is an artifact of the proof.

SUMMARY OF RESULTS:

- The constrained Ramsey number $f(S, P_t)$ is upper bounded by $O(st \log t)$.
- That is, for any tree S with s edges and any integer t, one can always find either a monochromatic copy of S or a rainbow t-path in any edge-coloring of the complete graph on 3600st log t vertices.
- This improves the previous bounds of $O(st^2)$ and $O(s^2t)$.

OPEN PROBLEMS:

- Remove the logarithmic term that separates our bound from the simple lower bound f(S, T) ≥ Ω(st). We believe that it is an artifact of the proof.
- It would be very interesting to improve the upper bounds for f(S, T) when T is a general tree (instead of a path).