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Classical Ramsey

Theorem:

For any t, there exists n such that every 2-coloring of the edges of
Kn has a monochromatic copy of Kt .

Questions:

What if there may be arbitrarily many colors?

Then is there an n which guarantees a monochromatic copy of
Kt or a rainbow copy of Kt?

Observation:

Every edge can have a different color, so cannot guarantee
monochromatic subgraphs.
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Canonical Ramsey Theorem

Erdős-Rado, 1950:

∀t,∃n s.t. any edge-coloring of the complete graph on {1, . . . , n},
with arbitrarily many colors, has a copy of Kt that is one of:

monochromatic

rainbow

upper lexical

lower lexical

Upper lexical coloring:
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Erdős-Rado, 1950:

∀t,∃n s.t. any edge-coloring of the complete graph on {1, . . . , n},
with arbitrarily many colors, has a copy of Kt that is one of:

monochromatic

rainbow: all edges different colors

upper lexical

lower lexical

Upper lexical coloring:



Canonical Ramsey Theorem
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∀t,∃n s.t. any edge-coloring of the complete graph on {1, . . . , n},
with arbitrarily many colors, has a copy of Kt that is one of:
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Constrained Ramsey Number

Definition:

Constrained Ramsey number f (S ,T ) = minimum n such that
every edge-coloring of Kn, with arbitrarily many colors, has one of:

monochromatic copy of S

rainbow copy of T

Existence:

By Canonical Ramsey Theorem, f (S ,T ) exists iff any sufficiently
large lexical coloring also contains either a monochromatic S or a
rainbow T .

Monochromatic subgraphs of lexical colorings are stars.

Rainbow subgraphs of lexical colorings are forests.

Thus, f (S ,T ) exists iff S is a star or T is a forest.
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Main problem: diagonal case

We focus on f (S ,T ) when both S and T are trees with s and t
edges, respectively.

Proof of lower bound: f (S ,T ) ≥ Ω(st)

Edge-color Kt−2 with t − 2
colors.

Blow up each vtx by s/2 times.

Edges between blow-ups inherit
original color, and edges within
blow-ups all get the same new
color (t − 1).

Monochrome subgraphs have ≤ s vtxs ⇒ no monochrome S .

Only t − 1 total colors ⇒ no rainbow T .
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Upper bounds

Jamison, Jiang, and Ling, 2003: f (S ,T ) ≤ O(st2)

Proof by induction on diameter of T .

Actually showed f (S ,T ) ≤ O(st · diam(T )).

Conjecture: f (S ,T ) ≤ O(st), and f (S ,T ) is extremal when S
and T are both paths.

Wagner, 2006: f (S ,Pt) ≤ O(s2t)

Proof method: (for contradiction, assume no monochromatic S)

Find an induced subgraph in which most edges can be
oriented, such that directed paths are always rainbow.

Find long directed paths in that induced subgraph, and string
them together to contradict nonexistence of rainbow t-path.

Major open problem:

Find a sub-cubic upper bound for the diagonal case f (Pt ,Pt).
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Main result

L. and Sudakov, 2006:

The constrained Ramsey number satisfies f (S ,Pt) ≤ O(st log t).

That is, for any tree S with s edges and any integer t, one can
always find either a monochromatic copy of S or a rainbow t-path
in any edge-coloring of the complete graph on 3600st log t vertices.

Remarks:

This is within a logarithmic factor of the previously mentioned
lower bound f (S ,T ) ≥ Ω(st).

Proof significantly extends Wagner’s idea of orienting edges
such that directed paths are automatically rainbow.

We use the concept of median order as an inductive tool, as
introduced in Havet and Thomasse (2000).
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From colors to directions

The proof proceeds by contradiction; suppose that there is no
monochromatic S and no rainbow t-path.

Then:

Orientation lemma:

There exists a subset M ⊂ V such that:

M

|M| is within a constant factor of the original vertex set size.

Each vertex v ∈ M is associated with a unique color cv .

We may direct most of the edges in M such that if an edge is
directed −→uv , then its color was cu.

Observation: directed paths are automatically rainbow.
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Median order

Definition:

Given a linear ordering v1 < v2 < · · · < vn of the vertex set of a
directed graph, an edge −→vivj is called forward if i < j , and
backward otherwise.

A linear ordering which maximizes the number of forward edges is
called a median order.

Remarks:

Always exists, but not necessarily unique.

Originally arose in theoretical computer science; NP-hard.

Havet and Thomassé (2000) used median orders to give
simple proofs of Dean’s Conjecture, and Sumner’s Conjecture
for arborescences.
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Feedback property

Forward bias (helps find directed paths):

Let v1 < · · · < vn be a median order. Then for every i < k,

among the edges between vi and {vi+1, . . . , vk}, there are at least
as many forward edges as there are backward edges.

Proof. Suppose this is false for some i < k, and backward edges
outnumber forward edges in the picture.

Consider the alternative ordering obtained by moving vi to the
position between vk and vk+1.

Edges that switch forward/backward are precisely those
between vi and {vi+1, . . . , vk}.
But this increases the total number of forward edges in the
graph, contradicting the maximality of the median order. �
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Concluding remarks

Summary of results:

The constrained Ramsey number f (S ,Pt) is upper bounded
by O(st log t).

That is, for any tree S with s edges and any integer t, one
can always find either a monochromatic copy of S or a
rainbow t-path in any edge-coloring of the complete graph on
3600st log t vertices.

This improves the previous bounds of O(st2) and O(s2t).

Open problems:

Remove the logarithmic term that separates our bound from
the simple lower bound f (S ,T ) ≥ Ω(st). We believe that it is
an artifact of the proof.

It would be very interesting to improve the upper bounds for
f (S ,T ) when T is a general tree (instead of a path).
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