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For any t, there exists n such that every 2-coloring of the edges of
K, has a monochromatic copy of K;.

QUESTIONS:

@ What if there may be arbitrarily many colors?

@ Then is there an n which guarantees a monochromatic copy of
Kt or a rainbow copy of K;?

OBSERVATION:

Every edge can have a different color, so cannot guarantee
monochromatic subgraphs.
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CANONICAL RAMSEY THEOREM

ErDOs-RADO, 1950:

Vt,3n s.t. any edge-coloring of the complete graph on {1,..., n},
with arbitrarily many colors, has a copy of K; that is one of:

@ monochromatic

rainbow: all edges different colors

°
@ upper lexical: color uniquely determined by larger endpoint
°

lower lexical: color uniquely determined by smaller endpoint

UPPER LEXICAL COLORING:
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DEFINITION:

Constrained Ramsey number (S, T) = minimum n such that
every edge-coloring of K,,, with arbitrarily many colors, has one of:

@ monochromatic copy of S

@ rainbow copy of T

EXISTENCE:

| \

By Canonical Ramsey Theorem, (S, T) exists iff any sufficiently
large lexical coloring also contains either a monochromatic S or a
rainbow T.

1 3=~y 8
\—/

@ Monochromatic subgraphs of lexical colorings are stars.
@ Rainbow subgraphs of lexical colorings are forests.
Thus, f(S, T) exists iff S is a star or T is a forest.
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PROOF OF LOWER BOUND: f(S, T) > Q(st)

@ Edge-color K;_o with t — 2
colors.
@ Blow up each vtx by s/2 times.

@ Edges between blow-ups inherit
original color, and edges within
blow-ups all get the same new

— color (t —1).

@ Monochrome subgraphs have < s vtxs = no monochrome S.

@ Only t — 1 total colors = no rainbow T.
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JAMISON, JIANG, AND LING, 2003: f(S, T) < O(st?)
@ Proof by induction on diameter of T.
@ Actually showed f(S, T) < O(st - diam(T)).

e Conjecture: f(S, T) < O(st), and f(S, T) is extremal when S
and T are both paths.

WAGNER, 2006: (S, P;) < O(s%t)

Proof method: (for contradiction, assume no monochromatic S)

@ Find an induced subgraph in which most edges can be
oriented, such that directed paths are always rainbow.

e Find long directed paths in that induced subgraph, and string
them together to contradict nonexistence of rainbow t-path.

V.

MAJOR OPEN PROBLEM:

Find a sub-cubic upper bound for the diagonal case f(P;, P;).
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The constrained Ramsey number satisfies (S, P;) < O(st log t).

That is, for any tree S with s edges and any integer t, one can
always find either a monochromatic copy of S or a rainbow t-path
in any edge-coloring of the complete graph on 3600st log t vertices.

REMARKS:

@ This is within a logarithmic factor of the previously mentioned
lower bound (S, T) > Q(st).

@ Proof significantly extends Wagner's idea of orienting edges
such that directed paths are automatically rainbow.

@ We use the concept of median order as an inductive tool, as
introduced in Havet and Thomasse (2000).
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FROM COLORS TO DIRECTIONS
The proof proceeds by contradiction; suppose that there is no
monochromatic S and no rainbow t-path. Then:

ORIENTATION LEMMA:
There exists a subset M C V such that:

M

@ |M| is within a constant factor of the original vertex set size.
@ Each vertex v € M is associated with a unique color ¢, .

@ We may direct most of the edges in M such that if an edge is
directed wv, then its color was c,.

Observation: directed paths are automatically rainbow.
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directed graph, an edge Tv] is called forward if i < j, and
backward otherwise.
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A linear ordering which maximizes the number of forward edges is
called a median order.

| A\

REMARKS:

o Always exists, but not necessarily unique.
@ Originally arose in theoretical computer science; NP-hard.

o Havet and Thomassé (2000) used median orders to give
simple proofs of Dean’s Conjecture, and Sumner’s Conjecture
for arborescences.
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FEEDBACK PROPERTY

FORWARD BIAS (HELPS FIND DIRECTED PATHS):

Let vi < --- < v, be a median order. Then for every i < k,

among the edges between v; and {vj;1,..., v}, there are at least
as many forward edges as there are backward edges.

Proof. Suppose this is false for some i < k, and backward edges
outnumber forward edges in the picture.

o Consider the alternative ordering obtained by moving v; to the
position between vj and vj1.

e Edges that switch forward/backward are precisely those
between v; and {vjy1,..., vk}

@ But this increases the total number of forward edges in the
graph, contradicting the maximality of the median order. [
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SUMMARY OF RESULTS:

@ The constrained Ramsey number 7(S, P;) is upper bounded
by O(stlog t).

@ That is, for any tree S with s edges and any integer t, one
can always find either a monochromatic copy of S or a
rainbow t-path in any edge-coloring of the complete graph on
3600st log t vertices.

@ This improves the previous bounds of O(st?) and O(s?t).

V.

OPEN PROBLEMS:

@ Remove the logarithmic term that separates our bound from
the simple lower bound f(S, T) > Q(st). We believe that it is
an artifact of the proof.

@ It would be very interesting to improve the upper bounds for
f(S, T) when T is a general tree (instead of a path).




