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1 Warm-up

1. Let I be the incenter of 4ABC. Let A′ be the midpoint of the arc BC of the circumcircle of 4ABC
which does not contain A. Prove that the lines IA′, BC, and the angle bisector of ∠BAC are concur-
rent. Hint: you shouldn’t need the Big Point Theorem1 for this one!

Solution: Two of these lines are the angle bisector of ∠A, and of course that intersects with side
BC.

2 Tools

2.1 Ceva and friends

Ceva. Let ABC be a triangle, with A′ ∈ BC, B′ ∈ CA, and C ′ ∈ AB. Then AA′, BB′, and CC ′ concur if
and only if:

AC ′

C ′B
· BA′

A′C
· CB′

B′A
= 1.

Trig Ceva. Let ABC be a triangle, with A′ ∈ BC, B′ ∈ CA, and C ′ ∈ AB. Then AA′, BB′, and CC ′

concur if and only if:
sin∠CAA′

sin∠A′AB
· sin∠ABB′

sin∠B′BC
· sin∠BCC ′

sin∠C ′CA
= 1.

Menelaus. Let ABC be a triangle, and let D, E, and F line on the extended lines BC, CA, and AB. Then
D, E, and F are collinear if and only if:

AF

FB
· BD

DC
· CE

EA
= −1.

Now try these problems.

1. (Gergonne point) Let ABC be a triangle, and let its incircle intersect sides BC, CA, and AB at
A′, B′, C ′ respectively. Prove that AA′, BB′, CC ′ are concurrent.

Solution: Ceva. Since incircle, we have BA′ = CA′, etc., so Ceva cancels trivially.

2. (Isogonal conjugate of Gergonne point) Let ABC be a triangle, and let D,E, F be the feet of the
altitudes from A,B, C. Construct the incircles of triangles AEF , BDF , and CDE; let the points of
tangency with DE, EF , and FD be C ′′, A′′, and B′′, respectively. Prove that AA′′, BB′′, CC ′′ concur.

Solution: Trig ceva. Easy to check that triangles AEF and ABC are similar, because, for example,
BFEC is cyclic so ∠ABC = ∠AEF . Therefore, the line AA′′ in this problem is the reflection across

1A classic act of desparation in Team Contest presentations.
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the angle bisector of the AA′ of the previous problem. So, for example, ∠CAA′′ = ∠A′AB and
∠A′′AB = ∠CAA′.

In particular, since we knew that the previous problem’s AA′, BB′, and CC ′ are concurrent, Trig Ceva
gives

sin∠CAA′

sin∠A′AB
· sin∠ABB′

sin∠B′BC
· sin∠BCC ′

sin∠C ′CA
= 1.

Now each ratio flips, because, e.g., sin ∠CAA′′

sin ∠A′′AB = sin ∠A′AB
sin ∠CAA′ . So the product is still 1−1 = 1, hence we

have concurrence by Trig Ceva again.

2.2 The power of Power of a Point

Definition. Let ω be a circle with center O and radius r, and let P be a point. The power of P with
respect to ω is defined to be the difference of squared lengths OP 2 − r2. If ω′ is another circle, then the
locus of points with equal power with respect to both ω and ω′ is called their radical axis.

Use the following exercises to familiarize yourself with these concepts.

1. Let ω be a circle with center O, and let P be a point. Let ` be a line through P which intersects O at
the points A and B. Prove that the power of P with respect to ω is equal to the (signed) product of
lengths PA · PB.

Solution: Classical.

2. Show that the radical axis of two circles is always a line.

Solution: You can even use coordinates! Put both circles on x-axis, with centers (xi, 0). Let their
radii be ri. Locus is points of the form (x, y) with (x− x1)2 + y2 − r2

1 = (x− x2)2 + y2 − r2
2. But y2

cancels, and only x remains, so it is a vertical line at the solution x.

3. Let ω1 and ω2 be two circles intersecting at the points A and B. Show that their radical axis is precisely
the line AB.

Solution: Clearly, points A and B have equal power (both zero) with respect to the circles. From
previous problem, we know that locus is a line, and two points determine that line.

The above exercises make the following theorem useful.

Theorem. (Radical Axis) Let ω1, ω2, and ω3 be three circles. Then their (3) pairwise radical axes are
concurrent (or are parallel).

Proof. Obvious from transitivity and the above definition of radical axis. �

Now try these problems.

1. (Russia 1997/15) The circles S1 and S2 intersect at M and N . Show that if vertices A and C of a
rectangle ABCD lie on S1 while vertices B and D lie on S2, then the intersection of the diagonals of
the rectangle lies on the line MN .

Solution: The lines are the radical axes of S1, S2, and the circumcircle of ABCD.

2. (USAMO 1997/2) Let ABC be a triangle, and draw isosceles triangles BCD,CAE, ABF externally to
ABC, with BC, CA, AB as their respective bases. Prove that the lines through A,B, C perpendicular
to the lines EF,FD,DE, respectively, are concurrent.

Solution: Use the three circles: (1) centered at D with radius DB, (2) centered at E with radius
EC, and (3) centered at F with radius FA.
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2.3 Pascal and company

Pappus. Let `1 and `2 be lines, let A,C, E ∈ `1, and let B,D,F ∈ `2. Then AB ∩ DE, BC ∩ EF , and
CD ∩ FA are collinear.

Pascal. Let ω be a conic section, and let A,B, C, D, E, F ∈ ω. Then AB ∩DE, BC ∩ EF , and CD ∩ FA
are collinear.

Brianchon. Let the conic ω be inscribed in hexagon ABCDEF . Then the diagonals AD, BE, and CF are
concurrent.

Remark. Typically, the only “conics” we need to consider are circles. Also, we can apply to degenerate cases
where some of the points coalesce. For example, if we use A = B, then the line AB should be interpreted as
the tangent at A.

Now try these problems.

1. (Half of Bulgaria 1997/10) Let ABCD be a convex quadrilateral such that ∠DAB = ∠ABC = ∠BCD.
Let G and O denote the centroid and circumcenter of the triangle ABC. Prove that G, O, D are
collinear. Hint: Construct the following points:

• M = midpoint of AB

• N = midpoint of BC

• E = AB ∩ CD

• F = DA ∩BC.

Solution: Direct application of Pappus to the hexagon MCENAF . Recognize the intersection
points as G, O, and D.

2. (From Kiran Kedlaya’s Geometry Unbound) Let ABCD be a quadrilateral whose sides AB, BC, CD,
and DA are tangent to a single circle at the points M,N,P, Q, respectively. Prove that the lines AC,
BD, MP , and NQ are concurrent.

Solution: Brianchon on BNCDQA gives concurrence of BD, NQ, CA, and do again on AMBCPD
to get the rest (use transitivity).

3. (Part of MOP 1995/?, also from Kiran) With the same notation as above, let BQ and BP intersect
the circle at E and F , respectively. Show that B, MP ∩NQ, and ME ∩NF are collinear.

Solution: Pascal on EMPFNQ.

2.4 Shifting targets

Sometimes it is useful to turn a collinearity problem into a concurrence problem, or even to show that
different collections of lines/points are concurrent/collinear.

Identification. Three lines AB, CD, and EF are concurrent if and only if the points A, B, and CD ∩EF
are collinear.

Desargues. Two triangles are perspective from a point if and only if they are perspective from a line. Two
triangles ABC and DEF are perspective from a point when AD, BE, and CF are concurrent.
Two triangles ABC and DEF are perspective from a line when AB∩DE, BC∩EF , and CA∩FD
are collinear.

False transitivity. If three points are pairwise collinear, that is not enough to ensure that they are collec-
tively collinear, and similarly for lines/concurrence.
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True transitivity. If distinct points A,B, C and B,C,D are collinear, then all four points are collinear,
and similarly for lines/concurrence.

Now try these problems.

1. (Full Bulgaria 1997/10) Let ABCD be a convex quadrilateral such that ∠DAB = ∠ABC = ∠BCD.
Let H and O denote the orthocenter and circumcenter of the triangle ABC. Prove that D,O,H are
collinear.

Solution: In the previous section, we showed that G, O, D were collinear, where G was the centroid
of ABC. But G, H,O are collinear because they are on the Euler Line of ABC, so we are done by
transitivity.

2. (Full MOP 1995/?) Let ABCD be a quadrilateral whose sides AB, BC, CD, and DA are tangent to
a single circle at the points M,N,P, Q, respectively. Let BQ and BP intersect the circle at E and F ,
respectively. Prove that ME, NF , and BD are concurrent.

Solution: Combine previous section’s problems. We know from one of them that B, MP ∩ NQ,
and D are collinear. From the other, we know that B, MP ∩ NQ, and ME ∩ NF are collinear.
Identification/transitivity solves the problem.

3 Problems

1. (Zeitz 1996) Let ABCDEF be a convex cyclic hexagon. Prove that AD,BE,CF are concurrent if
and only if AB · CD · EF = BC ·DE · FA.

Solution: Trig Ceva

2. (China 1996/1) Let H be the orthocenter of acute triangle ABC. The tangents from A to the circle
with diameter BC touch the circle at P and Q. Prove that P,Q,H are collinear.

Solution: Let A′ be the foot of the altitude from A, and let C ′ be the foot of the altitude from C.
Then H = AA′ ∩ CC ′. Let ω be the circle with diameter BC. Construct the circle ω′ with diameter
AO. The intersection of these two circles is precisely P,Q, since ∠APO = 90◦ = ∠AQO. So we need
to show that H is on the radical axis, i.e., that H has equal power wrt the two circles. Power of H wrt
ω is CH ·HC ′, and power wrt ω′ is AH ·HA′ since ∠AA′O = 90◦ ⇒ A′ ∈ ω′. But it is a well-known
fact that AH ·HA′ = CH ·HC ′ for any triangle, which can be verified by observing that ACA′C ′ is
cyclic.

3. (Turkey 1996/2) In a parallelogram ABCD with ∠A < 90◦, the circle with diameter AC meets the
lines CB and CD again at E and F , respectively, and the tangent to this circle at A meets BD at P .
Show that P, F, E are collinear.

Solution: Use Menelaus. Need to show:

CE

EB
· BP

PD
· DF

FC
= −1.

Actually, the configuration is already OK, so suffices to consider only unsigned lengths. Construct
the point X = PA ∩ CE. By similar triangles, BP/DP = BX/DA. Also by similar triangles,
DF/BE = DA/BA. So it suffices to show that CE/FC · BX/BA = 1, i.e., that 4ABX ∼ 4ECF .
We already have ∠B = ∠C, and we can see that ∠X = ∠F by observing that ∠X = 1

2 (AC−AE) and
∠F = 1

2EC, where AC,AE,EC stand for the measures of those arcs in radians. But this is immediate
because AC is a diameter.
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4. (St. Petersburg 1996/17) The points A′ and C ′ are chosen on the diagonal BD of a parallelogram
ABCD so that AA′ ‖ CC ′. The point K lies on the segment A′C, and the line AK meets CC ′ at L.
A line parallel to BC is drawn through K, and a line parallel to BD is drawn through C; these meet
at M . Prove that D,M,L are collinear.

Solution: Can be done with bare hands.

5. (Korea 1997/8) In an acute triangle ABC with AB 6= AC, let V be the intersection of the angle
bisector of A with BC, and let D be the foot of the perpendicular from A to BC. If E and F
are the intersections of the circumcircle of AV D with CA and AB, respectively, show that the lines
AD,BE,CF concur.

Solution: Can be done with Ceva.

6. (Bulgaria 1996/2) The circles k1 and k2 with respective centers O1 and O2 are externally tangent at
the point C, while the circle k with center O is externally tangent to k1 and k2. Let ` be the common
tangent of k1 and k2 at the point C and let AB be the diameter of k perpendicular to `. Assume that
O and A lie on the same side of `. Show that the lines AO1, BO2, ` have a common point.

Solution: Can be done with Ceva.

7. (Russia 1997/13) Given triangle ABC, let A1, B1, C1 be the midpoints of the broken lines CAB,
ABC, BCA, respectively. Let lA, lB , lC be the respective lines through A1, B1, C1 parallel to the angle
bisectors of A,B, C. Show that lA, lB , lC are concurrent.

Solution: Key observation: lA passes through the midpoint of AC. Since it is parallel to bisector
of ∠A, and medial triangle is homothety of ratio −1/2 of original triangle, the lines lA, etc. concur at
the incenter of the medial triangle.

Proof of key observation: construct B′ by extending CA beyond A such that AB′ = AB. Also construct
C ′ by extending BA beyond A such that AC ′ = AC. Then lA is the line through the midpoints of BC ′

and B′C. This is the midline of quadrilateral BB′C ′C parallel to BB′, so it hits BC the midpoint of
BC.

8. (China 1997/4) Let ABCD be a cyclic quadrilateral. The lines AB and CD meet at P , and the lines
AD and BC meet at Q. Let E and F be the points where the tangents from Q meet the circumcircle
of ABCD. Prove that points P,E, F are collinear.

Solution: Uses Polar Map

4 Harder problems

1. (MOP 1998/2/3a) Let ABC be a triangle, and let A′, B′, C ′ be the midpoints of the arcs BC, CA, AB,
respectively, of the circumcircle of ABC. The line A′B′ meets BC and AC at S and T . B′C ′ meets AC
and AB at F and P , and C ′A′ meets AB and BC at Q and R. Prove that the segments PS, QT, FR
concur.

Solution: They pass through the incenter of ABC, prove with Pascal on AA′C ′B′BC. See
MOP98/2/3a.

2. (MOP 1998/4/5) Let A1A2A3 be a nonisosceles triangle with incenter I. For i = 1, 2, 3, let Ci be the
smaller circle through I tangent to AiAi+1 and AiAi+2 (indices being taken mod 3) and let Bi be the
second intersection of Ci+1 and Ci+2. Prove that the circumcenters of the triangles A1B1I, A2B2I,
and A3B3I are collinear.

Solution: MOP98/4/5: Desargues
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3. (MOP 1998/2/3) Let ABC be a triangle, and let A′, B′, C ′ be the midpoints of the arcs BC, CA, AB,
respectively, of the circumcircle of ABC. The line A′B′ meets BC and AC at S and T . B′C ′ meets AC
and AB at F and P , and C ′A′ meets AB and BC at Q and R. Prove that the segments PS, QT, FR
concur.

Solution: They pass through the incenter of ABC, prove with Pascal on AA′C ′B′BC. See
MOP98/2/3a.

4. (MOP 1998/12/3) Let ω1 and ω2 be two circles of the same radius, intersecting at A and B. Let O be
the midpoint of AB. Let CD be a chord of ω1 passing through O, and let the segment CD meet ω2

at P . Let EF be a chord of ω2 passing through O, and let the segment EF meet ω1 at Q. Prove that
AB,CQ,EP are concurrent.

Solution: MOP98/12/3

5 Impossible problems

• Find (in the plane) a collection of m distinct lines and n distinct points, such that the number of
incidences between the lines and points is > 4(m2/3n2/3 + m + n). Formally, an incidence is defined
as an ordered pair (`, P ), where ` is one of the lines and P is one of the points. (This is known to be
impossible by the famous Szemerédi-Trotter theorem.)

Solution: The constant of 4 can be obtained via the crossing-lemma argument in the Probabilistic
Lens after Chapter 15 in The Probabilistic Method, by Alon and Spencer.
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