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Problem 1 (A.7) Let I be an ideal of Z[x] such that the elements of I do not

have a gcd of degree greater than 0 and I contains a polynomial with constant

term 1. Prove that I contains the polynomial 1 + x + x2 + x3 + · · · + xr−1 for

some natural number r.

Solution:
First observe that by the same method of proof as Gauss’s Lemma, we can

find that any prime factorization of an integral polynomial has the same form
(i.e. same number of factors of each degree) as its prime factorization in the
fraction field Q[x].

Lemma 1 The above statement is true.

Proof:
To see this, consider a polynomial f ′ ∈ Z[x] that factors into g′h′ in Q[x].

Decompose into Z[x] primitives as follows:

f ′ = Af

g′ =
a1

a2

g

h′ =
b1

b2

h,

where now all constants and polynomials are integral. Without loss of gener-
ality, suppose that the two fractions are already in reduced form. Cross multiply:

a2b2Af = a1b1gh (1)

Now use the fact that Z[x] is a UFD; pass to the quotient ring Z[x]/(a2).
The LHS drops out, so a2 must divide the RHS. Since g, h are primitive and
a1/a2 is a reduced fraction, it must divide b1. Similarly, b2|a1. Therefore, we can
write f ′ = AF = Kgh for some K ∈ Z, and any factorization over Q translates
into one over Z that is of the same form.

Lemma 2 |I ∩ Z| 6= 0.
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Proof:
By the above, since the gcd of I ’s elements is in Z, the gcd of I ’s elements as

viewed over Q is also of degree 0. Since Q[x] is Euclidean, if g = (f, h) then there
exist a, b ∈ Q[x] such that g = af +bh. We are told that there exists an element
in I whose constant term is 1. Start with this one and find another element
that it does not divide. We are guaranteed the existence of such an element
because the gcd of I ’s elements is of degree 0. Then from our knowledge in Q[x]
we can write a decomposition like g = af + bh. Clearing denominators, we get
something of the form g′ = a′f + b′g where all polynomials are over Z. Note
that the degree of g′ is equal to that of g. But since we have an ideal, we know
that g′ ∈ I .

Continue the process by doing it do g′ now. Each iteration reduces the
degree by 1, so eventually we will reach degree 0. Therefore, I contains some
element k ∈ Z. Now we know that I contains both a polynomial p with p(0) = 1
and an integer k. This amount of knowledge will suffice to solve our problem.

Lemma 3 I contains a polynomial with constant term 1 whose leading term is

relatively prime to k.

Proof:
Since k ∈ I we can work in Zk[x]. Let p be the polynomial with constant term

1. We propose an algorithm that will yield another polynomial with constant
term 1 whose leading coefficient has a lesser gcd with k.

Let us represent our polynomials by ordered n-tuples, where n − 1 is the
degree of the polynomial. For example, represent x3 +2x2 +1 as (1, 2, 0, 1). We
will find a polynomial a ∈ Zk[x] such that ap fulfills our algorithmic goal. When
we make a, we do not determine the degree first; rather, we build its n-tuple
from left to right and determine its degree when it terminates.

Suppose we are not yet done, i.e., we don’t have relative primality. Start
with the leading coefficient. Our mini-goal within the algorithm will be to make
zeros in the leading powers of ap (as viewed over Zk). Let p =

∑n

0
pix

i. Let our
new polynomial a = (a1, a2, a3, . . . , am). Take note of the fact that our indexing
of a is opposite that of p. Let the product ap = b = (b1, b2, . . . , bl).

We want to get a zero, and we know that (pn, k) 6= 1. Choose a1 = k/(pn, k).
We get a zero for b1. Keep going; we want b2 = 0, so choose a2 such that
a1pn−1 + a2pn = 0. Perhaps this is not possible—then we will have b2 such
that it is not a multiple of pn. Stop now and fill the rest of b with a bunch
of zeros (enough so that we don’t have to worry about any other terms). An
appropriate linear combination of b and p will get a leading term that has smaller
gcd. Multiply this by a sufficiently high power of x and add p; this will complete
an iteration of our algorithm.

If it was possible to get zero for b2, then keep going. Eventually we get stuck:
this is what we must prove now.

Sublemma 1 We will get stuck.

Proof:
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Suppose we do not get stuck. Then we will be able to make an arbitrarily
long sequence of leading zeros in our product polynomial. After going on for
some time, let us switch gears and try something else. That is, now each time
we extend our ai sequence by one term, consider what our product would be if
we terminated the ai sequence right there. It would have degree less than that
of p. Now, we are working in the finite ring Zk, so there are only finitely many
such polynomials. We’ll eventually see the same polynomial twice.

Suppose that these correspond to the Zk[x] polynomials α1 and α2, and we
have that α1p = α2p. Suppose that α2 is the one of greater degree (i.e. the one
we found last). Take the difference α = α2 −α1. Now αp = 0. Notice that k 6 |α
because that would mean that we picked a1 = 0, which we did not.

Yet since αp = 0 in Zk[x], it follows immediately that if we interpret both
polynomials in Z[x], we will have that k|αp. Since the constant term of p is 1,
p is primitive; hence k|α, which we just proved was impossible. This provides
us with the desired contradiction here.

Lemma 4 I contains a monic polynomial with constant term 1. Call this a

bimonic polynomial.

Proof:
Let p be the polynomial found by the previous lemma. From the relative

primality, there exists some integer c such that c times p’s leading coefficient
is 1 mod k. Therefore, multiply p by (cx + 1); this will yield such a monic
polynomial in Zk [x], and by adding an appropriate multiple of k we can get the
desired monic polynomial.

Lemma 5 I contains a desired polynomial.

Proof:
Just do long division with our n-tuples, where we don’t determine the degree

of the dividend until we find a terminating quotient. Work in Zk. Divide
(1, 1, 1, 1, . . .) by the bimonic p.

Since Zk is finite and the degree of p is finite, we either get a “repeating
decimal” or a terminating one. That is, eventually we either finish our division
happily or end up repeating again. If we terminate, then we will have found
that p|(1, 1, 1, . . . , 1) and are done. Otherwise, if we repeat, then we will have p
dividing two polynomials whose n-tuple representations are long strings of 1’s
(of different lengths) and whose tails are identical. Take the difference of these;
then we have p|xtq where q is of the desired form.

Yet Z[x] is a UFD. Since p(0) = 1, the polynomial p is not divisible by x.
Hence p|q, and we are done.
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