Putnam E.12

Po-Shen Loh

19 November 2024

1 Problems

Putnam 2019/B1. Denote by \mathbb{Z}^2 the set of all points (x, y) in the plane with integer coordinates. For each integer $n \ge 0$, let P_n be the subset of \mathbb{Z}^2 consisting of the point (0,0) together with all points (x, y) such that $x^2 + y^2 = 2^k$ for some integer $k \le n$. Determine, as a function of n, the number of four-point subsets of P_n whose elements are the vertices of a square.

Putnam 2019/B2. For all $n \ge 1$, let

$$a_n = \sum_{k=1}^{n-1} \frac{\sin\left(\frac{(2k-1)\pi}{2n}\right)}{\cos^2\left(\frac{(k-1)\pi}{2n}\right)\cos^2\left(\frac{k\pi}{2n}\right)}$$

Determine

$$\lim_{n \to \infty} \frac{a_n}{n^3}$$

Putnam 2019/B3. Let Q be an *n*-by-*n* real orthogonal matrix, and let $u \in \mathbb{R}^n$ be a unit column vector (that is, $u^T u = 1$). Let $P = I - 2uu^T$, where I is the *n*-by-*n* identity matrix. Show that if 1 is not an eigenvalue of Q, then 1 is an eigenvalue of PQ.