Putnam E.11

Po-Shen Loh

12 November 2024

1 Problems

Putnam 2019/A1. Determine all possible values of the expression

$$A^3 + B^3 + C^3 - 3ABC$$

where A, B, and C are nonnegative integers.

- **Putnam 2019/A2.** In the triangle $\triangle ABC$, let G be the centroid, and let I be the center of the inscribed circle. Let α and β be the angles at the vertices A and B, respectively. Suppose that the segment IG is parallel to AB and that $\beta = 2 \tan^{-1}(1/3)$. Find α .
- **Putnam 2019/A3.** Given real numbers $b_0, b_1, \ldots, b_{2019}$ with $b_{2019} \neq 0$, let $z_1, z_2, \ldots, z_{2019}$ be the roots in the complex plane of the polynomial

$$P(z) = \sum_{k=0}^{2019} b_k z^k.$$

Let $\mu = (|z_1| + \cdots + |z_{2019}|)/2019$ be the average of the distances from $z_1, z_2, \ldots, z_{2019}$ to the origin. Determine the largest constant M such that $\mu \ge M$ for all choices of $b_0, b_1, \ldots, b_{2019}$ that satisfy

$$1 \le b_0 < b_1 < b_2 < \dots < b_{2019} \le 2019.$$