Putnam 2.5

Po-Shen Loh

24 September 2023

1 Problems

Putnam 2002/A4. In Determinant Tic-Tac-Toe, Player 1 enters a 1 in an empty 3×3 matrix. Player 0 counters with a 0 in a vacant position, and play continues in turn until the 3×3 matrix is completed with five 1's and four 0's. Player 0 wins if the determinant is 0 and player 1 wins otherwise. Assuming both players pursue optimal strategies, who will win and how?

Putnam 2002/A5. Define a sequence by $a_{0}=1$, together with the rules $a_{2 n+1}=a_{n}$ and $a_{2 n+2}=a_{n}+a_{n+1}$ for each integer $n \geq 0$. Prove that every positive rational number appears in the set

$$
\left\{\frac{a_{n-1}}{a_{n}}: n \geq 1\right\}=\left\{\frac{1}{1}, \frac{1}{2}, \frac{2}{1}, \frac{1}{3}, \frac{3}{2}, \ldots\right\}
$$

Putnam 2002/A6. Fix an integer $b \geq 2$. Let $f(1)=1, f(2)=2$, and for each $n \geq 3$, define $f(n)=n f(d)$, where d is the number of base- b digits of n. For which values of b does

$$
\sum_{n=1}^{\infty} \frac{1}{f(n)}
$$

converge?

