Putnam 5.4

Po-Shen Loh

17 September 2023

1 Problems

Putnam 2003/B4. Let

$$
\begin{aligned}
f(z) & =a z^{4}+b z^{3}+c z^{2}+d z+e \\
& =a\left(z-r_{1}\right)\left(z-r_{2}\right)\left(z-r_{3}\right)\left(z-r_{4}\right),
\end{aligned}
$$

where a, b, c, d, e are integers, $a \neq 0$. Show that if $r_{1}+r_{2}$ is a rational number and $r_{1}+r_{2} \neq r_{3}+r_{4}$, then $r_{1} r_{2}$ is a rational number.

Putnam 2003/B5. Let A, B, C be equidistant points on the circumference of a circle of unit radius centered at O, and let P be any point in the circle's interior. Let a, b, c be the distances from P to A, B, C, respectively. Show that there is a triangle with side lengths a, b, c, and that the area of this triangle depends only on the distance from P to O.

Putnam 2003/B6. Let $f(x)$ be a continuous real-valued function defined on the interval $[0,1]$. Show that

$$
\int_{0}^{1} \int_{0}^{1}|f(x)+f(y)| d x d y \geq \int_{0}^{1}|f(x)| d x .
$$

