Putnam E. 10

Po-Shen Loh

7 November 2023

1 Problems

Putnam 1990/B1. Find all real-valued continuously differentiable functions f on the real line such that for all x,

$$
(f(x))^{2}=\int_{0}^{x}\left[(f(t))^{2}+\left(f^{\prime}(t)\right)^{2}\right] d t+1990
$$

Putnam 1990/B2. Prove that for $|x|<1,|z|>1$,

$$
1+\sum_{j=1}^{\infty}\left(1+x^{j}\right) P_{j}=0
$$

where P_{j} is

$$
\frac{(1-z)(1-z x)\left(1-z x^{2}\right) \cdots\left(1-z x^{j-1}\right)}{(z-x)\left(z-x^{2}\right)\left(z-x^{3}\right) \cdots\left(z-x^{j}\right)}
$$

Putnam 1990/B3. Let S be a set of 2×2 integer matrices whose entries $a_{i j}(1)$ are all squares of integers and, (2) satisfy $a_{i j} \leq 200$. Show that if S has more than $50387\left(=15^{4}-15^{2}-15+2\right)$ elements, then it has two elements that commute.

