9. Linear Algebra

Po-Shen Loh

CMU Putnam Seminar, Fall 2023

1 Classical results

Vandermonde. The determinant of the matrix

$$
\left(\begin{array}{ccccc}
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n-1} \\
1 & x_{2} & x_{2}^{2} & \cdots & x_{2}^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n-1}
\end{array}\right)
$$

is

$$
\prod_{1 \leq i<j \leq n}\left(x_{j}-x_{i}\right)
$$

Parallelogram. Let v and w be vectors in \mathbb{R}^{n}, and let $\|v\|$ denote the length of v. Prove that:

$$
\|v+w\|^{2}+\|v-w\|^{2}=2\|v\|^{2}+2\|w\|^{2}
$$

Isometry via Polarization. Let the real $n \times n$ matrix A be an isometry, i.e., so that for all vectors $x \in \mathbb{R}^{n}$:

$$
\|A x\|=\|x\|
$$

Prove that this is equivalent to the statement that

$$
\langle A x, A y\rangle=\langle x, y\rangle
$$

for all $x, y \in \mathbb{R}^{n}$.

2 Problems

1. Let P be a square matrix, with the property that $P^{2}=P$. (This is called a projection matrix.) If $c \neq 1$, compute $(I-c P)^{-1}$.
2. Find the determinant of the $n \times n$ matrix whose entries are all 1 's, except that all entries on the main diagonal are 0's. (The 0's are the entries in the top left corner, the 2 nd column of the 2 nd row, the 3rd column of the 3rd row, etc.)
3. Calculate the value of the determinant of the 3×3 complex matrix X, provided that $\operatorname{tr}(X)=1$, $\operatorname{tr}\left(X^{2}\right)=-3$, and $\operatorname{tr}\left(X^{3}\right)=4$. Here, $\operatorname{tr}(A)$ denotes the trace, that is, the sum of the diagonal entries of the matrix A.
4. Prove that for any integers $x_{1}, x_{2}, \ldots, x_{n}$ and positive integers $k_{1}, k_{2}, \ldots, k_{n}$, the determinant of the matrix

$$
\left(\begin{array}{cccc}
x_{1}^{k_{1}} & x_{1}^{k_{2}} & \cdots & x_{1}^{k_{n}} \\
x_{2}^{k_{1}} & x_{2}^{k_{2}} & \cdots & x_{2}^{k_{n}} \\
\vdots & \vdots & \vdots & \vdots \\
x_{n}^{k_{1}} & x_{n}^{k_{2}} & \cdots & x_{n}^{k_{n}}
\end{array}\right)
$$

is divisible by $(n!)$.
5. Let n be a positive integer and let x_{1}, \ldots, x_{n} be n nonzero points in the plane. Suppose $\left\langle x_{i}, x_{j}\right\rangle$ (scalar or dot product) is a rational number for all i, j. Let S denote all points of the plane of the form $\sum_{i=1}^{n} a_{i} x_{i}$ where the a_{i} are integers. A closed disk of radius R and center P is the set of points at distance at most R from P (includes the points distance R from P). Prove that there exists a positive number R and closed disks D_{1}, D_{2}, \ldots of radius R such that (a) Each disk contains exactly two points of S; (b) Every point of S lies in at least one disk; (c) Two distinct disks intersect in at most one point.
6. Let A and B be 2×2 matrices with integer entries, such that $A B=B A$ and $\operatorname{det} B=1$. Prove that if $\operatorname{det}\left(A^{3}+B^{3}\right)=1$, then A^{2} is the zero matrix.
7. Let A be an $n \times n$ matrix. Prove that there exists an $n \times n$ matrix B such that $A B A=A$.
8. For an $n \times n$ matrix A, denote by $\phi_{k}(A)$ the k-th symmetric polynomial in the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots$, λ_{n} of A,

$$
\phi_{k}(A)=\sum_{i_{1}<i_{2}<\cdots<i_{k}} \lambda_{i_{1}} \lambda_{i_{2}} \ldots \lambda_{i_{k}}
$$

For example, $\phi_{1}(A)$ is the trace and $\phi_{n}(A)$ is the determinant. Prove that for two $n \times n$ matrices A and $B, \phi_{k}(A B)=\phi_{k}(B A)$ for all $k=1,2, \ldots, n$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

