Putnam 5.7 Break Edition

Po-Shen Loh

16 October 2022

1 Problems

Putnam 2008/B4. Let p be a prime number. Let $h(x)$ be a polynomial with integer coefficients such that $h(0), h(1), \ldots, h\left(p^{2}-1\right)$ are distinct modulo p^{2}. Show that $h(0), h(1), \ldots, h\left(p^{3}-1\right)$ are distinct modulo p^{3}.

Putnam 2008/B5. Find all continuously differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that for every rational number q, the number $f(q)$ is rational and has the same denominator as q. (The denominator of a rational number q is the unique positive integer b such that $q=a / b$ for some integer a with $\operatorname{gcd}(a, b)=$ 1.) (Note: gcd means greatest common divisor.)

Putnam 2008/B6. Let n and k be positive integers. Say that a permutation σ of $\{1,2, \ldots, n\}$ is k-limited if $|\sigma(i)-i| \leq k$ for all i. Prove that the number of k-limited permutations of $\{1,2, \ldots, n\}$ is odd if and only if $n \equiv 0$ or $1(\bmod 2 k+1)$.

