1 Problems

Putnam 2000/B4. Let $f(x)$ be a continuous function such that $f(2x^2 - 1) = 2xf(x)$ for all x. Show that $f(x) = 0$ for $-1 \leq x \leq 1$.

Putnam 2000/B5. Let S_0 be a finite set of positive integers. We define finite sets S_1, S_2, \ldots of positive integers as follows: the integer a is in S_{n+1} if and only if exactly one of $a - 1$ or a is in S_n. Show that there exist infinitely many integers N for which $S_N = S_0 \cup \{N + a : a \in S_0\}$.

Putnam 2000/B6. Let B be a set of more than $2^{n+1}/n$ distinct points with coordinates of the form $(\pm 1, \pm 1, \ldots, \pm 1)$ in n-dimensional space with $n \geq 3$. Show that there are three distinct points in B which are the vertices of an equilateral triangle.