11. Integer Polynomials
Po-Shen Loh
CMU Putnam Seminar, Fall 2019

1 Classical results

Well-known fact. Let $P(n)$ be a polynomial with integer coefficients, and let a and b be integers. Show that $P(a) - P(b)$ is divisible by $a - b$.

Gauss. If a polynomial with integer coefficients can be factored into a product of polynomials with rational coefficients, then it can also be factored into a product of polynomials with integer coefficients.

Eisenstein. Let $P(x) = a_nx^n + a_{n-1}x^{n-1} + \cdots + a_0$ be a polynomial, such that there is a prime p for which

(i) p divides each of $a_0, a_1, \ldots, a_{n-1},$
(ii) p does not divide a_n, and
(iii) p^2 does not divide a_0.

Then $P(x)$ cannot be expressed as the product of two non-constant polynomials with integer coefficients.

Integers. There is a polynomial which takes integer values at all integer points, but does not have integer coefficients.

Rational Root Theorem. Suppose that $P(x) = a_nx^n + \cdots + a_0$ is a polynomial with integer coefficients, and that one of the roots is the rational number p/q (in lowest terms). Then, $p \mid a_0$ and $q \mid a_n$.

2 Problems

1. What is the largest positive integer that is a factor of $P(1) - 2P(7) + P(13)$, for every polynomial P with integer coefficients?

2. Find a nonzero polynomial $P(x, y)$ such that $P([a], [2a]) = 0$ for all real numbers a. (Note: $[\nu]$ is the greatest integer less than or equal to ν.)

3. Prove that for every prime number p, the polynomial

$$P(x) = x^{p-1} + x^{p-2} + \cdots + x + 1$$

cannot be expressed as the product of two non-constant polynomials with integer coefficients.

4. Suppose that the polynomial $P(x)$ with integer coefficients takes values ± 1 at three different integer points. Prove that it has no integer zeros.

5. Let $P(x)$ be a polynomial with integer coefficients. Suppose that there is an integer a for which $P(P(\cdots P(a) \cdots)) = a$, where P is iterated some number of times which is at least twice. Then, $P(P(a)) = a$.

1
6. Let \(P(x) \) be a polynomial with integer coefficients which cannot be factored as a product of polynomials with integer coefficients. Prove that \(P(x) \) has no multiple roots.

7. Let \(P(x) = x^n + 5x^{n-1} + 3 \), where \(n > 1 \) is an integer. Prove that \(P(x) \) cannot be expressed as the product of two non-constant polynomials with integer coefficients.

8. Suppose \(q_0, q_1, q_2, \ldots \) is an infinite sequence of integers satisfying the following two conditions:

 (i) \(m - n \) divides \(q_m - q_n \) for \(m > n \geq 0 \),

 (ii) there is a polynomial \(P \) and an integer \(\Delta \) such that \(|q_n - P(n)| < \Delta \) for all \(n \).

 Prove that there is a polynomial \(Q \) such that \(q_n = Q(n) \) for all \(n \).

9. For every polynomial \(P(x) \) with integer coefficients, does there always exist a positive integer \(k \) such that \(P(x) - k \) is irreducible over integers?

10. Let \(n \) be a positive integer, and let \(p(x) \) be a polynomial of degree \(n \) with integer coefficients. Prove that

\[
\max_{0 \leq x \leq 1} |p(x)| > \frac{1}{e^n}
\]