5. Functional equations

Po-Shen Loh

CMU Putnam Seminar, Fall 2018

1 Well-known statements

Cauchy. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function that satisfies f(x+y) = f(x) + f(y) for all $x, y \in \mathbb{R}$. Then there must be a real number c such that f(x) = cx for all $x \in \mathbb{R}$.

Discontinuous Cauchy. Without the continuity assumption, there are more solutions (using the Axiom of Choice).

Triple iterate. Let $f(x) = 1 - \frac{1}{x}$. Then f(f(f(x))) = x.

2 Problems

- 1. Let $f: \mathbb{R} \to \mathbb{R}$ be a continuous function such that f(f(f(x))) = x for all $x \in \mathbb{R}$. Prove that f(x) = x for all $x \in \mathbb{R}$.
- 2. Determine all continuous functions $f: \mathbb{R}^+ \to \mathbb{R}$ which satisfy

$$f(xy) = f(x) + f(y)$$

for all positive real numbers x, y.

3. Find all continuous functions $f: \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x + y) = f(x) + f(y) + f(x)f(y).$$

4. Let n_1, n_2, n_3, \ldots be a sequence of positive integers with the property that for every $k \geq 1$,

$$n_{k+1} > n_{n_k}$$
.

Prove that this must be the sequence $1, 2, 3, \ldots$

- 5. Do there exist continuous functions $f, g : \mathbb{R} \to \mathbb{R}$ such that $f(g(x)) = x^2$ and $g(f(x)) = x^3$ for all real numbers x?
- 6. Does there exist a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(f(x)) = x^2 2$ for all real numbers x?
- 7. There is a function f(x), continuous on the whole real line, which is not identically zero, but satisfies the equation

$$f(x) + f(2x) + f(3x) = 0$$

for all $x \in \mathbb{R}$.

8. Define the recursion:

$$\ell_{0}(s) = e^{-s}$$

$$\ell_{t+1}(s) = \frac{1}{1 + \ell_{t}(\frac{1}{2})} \left[\ell_{t} \left(s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2} \right)^{2} - \ell_{t} \left(s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2} \right) \ell_{t} \left(\frac{1}{2} + s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2} \right) + \ell_{t} \left(\frac{1}{2} + s \cdot \frac{1 + \ell_{t}(\frac{1}{2})}{2} \right) \right]$$

Prove that $\ell_t(\frac{1}{2}) \to 1$ as $t \to \infty$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.

¹P. Loh and E. Lubetzky, Stochastic coalescence in logarithmic time, Annals of Applied Probability, 23 (2013), 492–528.