Putnam $\Sigma.9$

Po-Shen Loh

29 October 2017

1 Problems

- **Putnam 1991/A4.** Does there exist an infinite sequence of closed discs D_1, D_2, D_3, \ldots in the plane, with centers c_1, c_2, c_3, \ldots , respectively, such that
 - 1. the c_i have no limit point in the finite plane,
 - 2. the sum of the areas of the D_i is finite, and
 - 3. every line in the plane intersects at least one of the D_i ?

Putnam 1991/A5. Find the maximum value of

$$\int_0^y \sqrt{x^4 + (y - y^2)^2} \, dx$$

for $0 \le y \le 1$.

Putnam 1991/A6. Let A(n) denote the number of sums of positive integers

$$a_1 + a_2 + \cdots + a_r$$

which add up to n with

$$a_1 > a_2 + a_3, a_2 > a_3 + a_4, \dots,$$

 $a_{r-2} > a_{r-1} + a_r, a_{r-1} > a_r.$

Let B(n) denote the number of $b_1 + b_2 + \cdots + b_s$ which add up to n, with

- 1. $b_1 \geq b_2 \geq \cdots \geq b_s$,
- 2. each b_i is in the sequence $1, 2, 4, ..., g_j, ...$ defined by $g_1 = 1, g_2 = 2$, and $g_j = g_{j-1} + g_{j-2} + 1$, and
- 3. if $b_1 = g_k$ then every element in $\{1, 2, 4, \dots, g_k\}$ appears at least once as a b_i .

Prove that A(n) = B(n) for each $n \ge 1$.