8. Recursions

Po-Shen Loh

CMU Putnam Seminar, Fall 2017

1 Famous results

Monotone sequences. A sequence a_1, a_2, \ldots is called *monotone increasing* if $a_{n+1} \geq a_n$ for all n, and *monotone decreasing* if $a_{n+1} \leq a_n$ for all n. A *monotone sequence* refers to a sequence that is in one of these two categories. Every monotone sequence converges to a limit.

Wallis product. Wow!

$$\frac{2}{1} \cdot \frac{2}{3} \cdot \frac{4}{3} \cdot \frac{4}{5} \cdot \frac{6}{5} \cdot \frac{6}{7} \cdot \frac{8}{7} \cdot \frac{8}{9} \cdots = \frac{\pi}{2}.$$

2 Problems

1. Define the sequence $a_0 = -1$, $a_1 = 0$, and

$$a_{n+1} = a_n^2 - (n+1)^2 a_{n-1} - 1$$
.

Find a_{100} .

2. Calculate $\sqrt{6+\sqrt{6+\sqrt{6+\cdots}}}$

3. Let $a_0 = 0$, and for each $n \ge 0$, let $a_{n+1} = 1 + \sin(a_n - 1)$. Determine $\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n a_i$.

4. For a real number α , define the sequence a_1, a_2, a_3, \ldots by starting $a_1 = \alpha$, and defining $a_{n+1} = a_n(1-a_n)$ for every $n \geq 1$. Prove that if $0 < \alpha < 1$, the resulting sequence always converges to 0. What happens if $\alpha < 0$? What happens if $\alpha > 1$? What happens if $\alpha = 0$ or $\alpha = 1$?

5. For a real number α , define the sequence a_1, a_2, a_3, \ldots by starting $a_1 = \alpha$, and defining $a_{n+1} = a_n(1-a_n)$ for every $n \geq 1$. Prove that if $0 < \alpha < 1$,

$$\lim_{n\to\infty} na_n = 1.$$

6. Let $a_1, a_2, a_3, ...$ be a sequence which satisfies $a_1 a_2 = 1$, $a_2 a_3 = 2$, $a_3 a_4 = 3$, $a_4 a_5 = 4$, etc., as well as $\lim_{n \to \infty} \frac{a_n}{a_{n+1}} = 1$. Prove that $a_1 = \sqrt{\frac{2}{\pi}}$.

7. Let $f:[0,1] \to [0,1]$ be a continuous function. Let x_1, x_2, \ldots be a sequence satisfying $x_{n+1} = f(x_n)$ for all $n \ge 1$, and suppose that

$$\lim_{n \to \infty} (x_{n+1} - x_n) = 0.$$

Prove that the entire sequence x_1, x_2, \ldots converges.

8. Let

$$a_n = \sqrt{1 + 2\sqrt{1 + 3\sqrt{1 + 4\sqrt{\dots + (n-3)\sqrt{1 + (n-2)\sqrt{1 + (n-1)\sqrt{1 + (n)}}}}}}$$

1

Prove that $\lim_{n\to\infty} a_n = 3$.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class.