2. Polynomials

Po-Shen Loh

CMU Putnam Seminar, Fall 2014

1 Well-known statements

Limited roots. A polynomial of degree n has exactly n (complex) roots, counted with multiplicity.

- **Complete factorization.** If the *n* roots of a degree-*n* polynomial p(z) are r_1, \ldots, r_n , then we can express p(z) as $a(z r_1) \cdots (z r_n)$.
- Vieta's formulas. If $p(z) = z^n + a_{n-1}z^{n-1} + \cdots + a_0$, then the product of the roots is $(-1)^n a_0$, and the sum of the roots is $-a_{n-1}$.
- **Uniqueness.** For each nonnegative integer n, if two polynomials $p(x) = a_n x^n + \cdots + a_0$ and $q(x) = b_n x^n + \cdots + b_0$ are equal for n + 1 distinct values of x, then all of their coefficients are equal, and they are the same polynomial.
- **Lagrange interpolation.** If p(x) is a polynomial of degree n, and we have real numbers x_1, \ldots, x_{n+1} and y_1, \ldots, y_{n+1} such that every $p(x_i) = y_i$, then there is an explicit formula for the polynomial p(x).

2 Problems

- 1. If 3 distinct points on the curve $y = x^3$ are collinear, then the sum of the x-coordinates of those 3 points equals 0. There's actually a similar Putnam problem: show that if 4 distinct points on the curve $y = 2x^4 + 7x^3 + 3x 5$ are collinear, then their average x-coordinate is some constant k; determine k.
- 2. Given any *n* real pairs $(x_1, y_1), \ldots, (x_n, y_n)$, with all x_i distinct, prove that there is a polynomial *P* such that $P(x_i) = y_i$ for all of those pairs, and also all roots of *P* are real.
- 3. Let P(z) be a polynomial with complex coefficients. Prove that P(z) is an even function if and only if there exists a polynomial Q(z) with complex coefficients satisfying P(z) = Q(z)Q(-z).
- 4. Describe all ordered pairs (a, b) of real numbers such that both (possibly complex) roots of $z^2 + az + b = 0$ satisfy |z| < 1.
- 5. Suppose $f : \mathbb{R}^2 \to \mathbb{R}$ has the property that for each fixed x, the function $g_x(y) = f(x, y)$ is a polynomial in y, and for each fixed y, the function $h_y(x) = f(x, y)$ is a polynomial in x. Prove that f(x, y) must be a polynomial in x and y, i.e., that there is a finite n, and a finite collection of real numbers $a_{j,k}$ with $0 \le j, k \le n$, such that $f(x, y) = \sum_{j=0}^n \sum_{k=0}^n a_{j,k} x^j y^k$.
- 6. Prove that there is a function $f : \mathbb{Q}^2 \to \mathbb{Q}$ with the above property, but which is not a polynomial in x and y.
- 7. Invent a single (binary) operation \star such that for every real numbers a and b, the operations a + b, a b, $a \times b$, and $a \div b$ can be created by applying just \star (possibly many times), starting with just a's and b's.

3 Homework

Please write up solutions to two of the problems, to turn in at next week's meeting. One of them may be a problem that we discussed in class. You are encouraged to collaborate with each other. Even if you do not solve a problem, please spend two hours thinking, and submit a list of your ideas.