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1 Problems

Putnam 2007/A1. Find all values of « for which the curves y = az? + az + i and z = ay?® + ay + i
are tangent to each other.

Putnam 1996 /B2. Show that for every positive integer n,
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Putnam 1999/A3. Consider the power series expansion
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Prove that, for each integer n > 0, there is an integer m such that
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Putnam 1999/A4. Sum the series

Putnam 1999/A5. Prove that there is a constant C' such that, if p(z) is a polynomial of degree 1999, then
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Putnam 1999/A6. The sequence (ay,),>1 is defined by a1 =1, a3 = 2,a3 = 24, and, for n > 4,
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Show that, for all n, a,, is an integer multiple of n.



