Luc TARTAR Remarks, PUTNAM preparation, Thursday November 3

VTRMC 2010/1, modified: Let A be a $n \times n$ integer matrix. Suppose

$$1 + A + A^2 + \dots + A^{100} = 0.$$

Show that $A^k + A^{k+1} + \cdots + A^{100}$ has determinant ± 1 for every positive integer $k \leq 100$.

Solution: One uses the fact that, since $det(B_1B_2) = det(B_1) det(B_2)$, if B_1, B_2 are integer matrices such that $det(B_1B_2) \in \{-1, +1\}$, one deduces that $det(B_1), det(B_2) \in \{-1, +1\}$.

Multiplying $1 + A + A^2 + \dots + A^{100}$ by I - A, one deduces that $I - A^{101} = 0$, so that $det(A)^{101} = det(A^{101}) = +1$, hence det(A) = +1.

Then, since $(I + A) (I + A^2 + A^4 + \dots + A^{98} + A^{100}) = I + A + A^2 + \dots + A^{100} + A^{101} = A^{101}$ has determinant +1, one deduces that $det(I + A) \in \{-1, +1\}$.

Then, since $(I + A + A^2) (I + A^3 + A^6 + \dots + A^{96} + A^{99}) = I + A + A^2 + \dots + A^{100} + A^{101} = A^{101}$ has determinant +1, one deduces that $det(I + A + A^2) \in \{-1, +1\}$.

Then, since $(I + A + A^2 + A^3) (I + A^4 + A^8 + \dots + A^{96} + A^{100}) = I + A + A^2 + \dots + A^{102} + A^{103} = A^{101} + A^{102} + A^{103} = A^{101} (1 + A + A^2)$ has determinant $\in \{-1, +1\}$, then $det(I + A + A^2 + A^3) \in \{-1, +1\}$.

By induction, one deduces that for $1 \leq j \leq 99$ one has $det(I + A + \cdots + A^j) \in \{-1, +1\}$, and this implies the desired result, since $det(A^k + A^{k+1} + \cdots + A^{100}) = det^k(A) det(I + A + \cdots + A^j)$ for j = 100 - k.

Such an integer matrix A exists at least for n a multiple of 100, since the characteristic polynomial of

the companion matrix
$$\begin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & 1 \\ -c_0 & -c_1 & \dots & \dots & -c_{n-1} \end{pmatrix}$$
 is $(-1)^n (c_0 + c_1 \lambda + \dots + c_{n-1} \lambda^{n-1} + \lambda^n)$,

and by taking n = 100 and all $c_j = 1$ one obtains a desired integer matrix. I suppose that such an integer matrix mail only exist if n is a multiple of 100.

Putnam 2010/B6: Let A be an $n \times n$ real matrix. For each integer $k \ge 0$, let $A^{[k]}$ be the matrix obtained by raising each entry of A to the k-th power. Show that if $A^k = A^{[k]}$ for k = 1, 2, ..., n + 1, then $A^k = A^{[k]}$ for all $k \ge 1$.

Hint: By linearity, the hypothesis implies that for every polynomial Q of degree $\leq n$ one has $(Q(A))_{i,j} = Q(A_{i,j})$. By the theorem of Cayley–Hamilton, A satisfies $P_c(A) = 0$, where P_c is the characteristic polynomial $P_c(\lambda) = det(\lambda I - A)$. One then has $P_c(A_{i,j}) = 0$ for all entries $A_{i,j}$. If P is any polynomial (like $P(x) = x^k$ for an arbitrary value of k) then the Euclidean division algorithm gives $P = P_cQ_1 + Q_2$ with $degree(Q_2) \leq n - 1$, and $P(A) = Q_2(A)$, and $P(A_{i,j}) = Q_2(A_{i,j})$ for all entries, hence $(P(A))_{i,j} = P(A_{i,j})$ for all polynomials P and all entries.

Notice that one does not need the hypothesis for k = n + 1.

Of course, diagonal matrices have this property, but it is interesting to observe that there are nondiagonal ones as well: for n = 2, since $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ implies $A^2 = \begin{pmatrix} a^2 + b c & b (a + d) \\ c (a + d) & d^2 + b c \end{pmatrix}$, so that $A^2 = \begin{pmatrix} a^2 & b^2 \\ c^2 & d^2 \end{pmatrix}$ means bc = 0, $b^2 = b (a + d)$, and $c^2 = c (a + d)$, and choosing b = 0 and c = a + d gives an infinite family of non-diagonal solutions.

VTRMC 2009/5: Let A, B be 3×3 matrices with $B \neq 0$ and AB = 0. Prove that there exists a 3×3 matrix D such that AD = DA = 0.

[Of course, the question should ask that D be different from 0.]

Solution: Since the image of B is not restricted to $\{0\}$, the property of B is that its kernel is not restricted to $\{0\}$. Then the image of A is not \mathbb{R}^3 since the dimension of the kernel ker(A) plus the dimension of the image Im(A) is 3. One finds all solutions D by asking that D is 0 on Im(A), and on a supplement X of Im(A), one defines D to take values in ker(A).

As I mentioned, using the Cayley–Hamilton theorem, i.e. $P_c(A) = 0$ for the characteristic polynomial P_c of A, does not always permit to take D = Q(A) for the polynomial $Q(x) = \frac{P_c(x)}{x}$, since for a matrix $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \text{ one has } A^2 = 0 \text{, and it that case it would give } D = 0. \text{ One should then take } Q(x) = \frac{P_{min}(x)}{x}$

for the minimal polynomial P_{min} , which has the eigenvalue λ as a root with multiplicity equal to the geometric multiplicity of that eigenvalue, and not the algebraic multiplicity.