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Remarks, PUTNAM preparation, Thursday November 3

VTRMC 2010/1, modified: Let A be a n× n integer matrix. Suppose

1 +A+A2 + · · ·+A100 = 0.

Show that Ak +Ak+1 + · · ·+A100 has determinant ±1 for every positive integer k ≤ 100.
Solution: One uses the fact that, since det(B1B2) = det(B1) det(B2), if B1, B2 are integer matrices such that
det(B1B2) ∈ {−1,+1}, one deduces that det(B1), det(B2) ∈ {−1,+1}.

Multiplying 1 + A + A2 + · · · + A100 by I − A, one deduces that I − A101 = 0, so that det(A)101 =
det(A101) = +1, hence det(A) = +1.

Then, since (I + A) (I + A2 + A4 + · · · + A98 + A100) = I + A + A2 + · · · + A100 + A101 = A101 has
determinant +1, one deduces that det(I +A) ∈ {−1,+1}.

Then, since (I +A+A2) (I +A3 +A6 + · · ·+A96 +A99) = I +A+A2 + · · ·+A100 +A101 = A101 has
determinant +1, one deduces that det(I +A+A2) ∈ {−1,+1}.

Then, since (I + A + A2 + A3) (I + A4 + A8 + · · · + A96 + A100) = I + A + A2 + · · · + A102 + A103 =
A101 +A102 +A103 = A101(1 +A+A2) has determinant ∈ {−1,+1}, then det(I +A+A2 +A3) ∈ {−1,+1}.

By induction, one deduces that for 1 ≤ j ≤ 99 one has det(I + A + · · · + Aj) ∈ {−1,+1}, and this
implies the desired result, since det(Ak +Ak+1 + · · ·+A100) = detk(A) det(I +A+ · · ·+Aj) for j = 100− k.

Such an integer matrix A exists at least for n a multiple of 100, since the characteristic polynomial of

the companion matrix


0 1 0 . . . 0
0 0 1 . . . 0
...

. . .
. . .

...
0 0 0 . . . 1
−c0 −c1 . . . . . . −cn−1

 is (−1)n(c0 + c1λ+ . . .+ cn−1λ
n−1 + λn),

and by taking n = 100 and all cj = 1 one obtains a desired integer matrix. I suppose that such an integer
matrix mail only exist if n is a multiple of 100.

Putnam 2010/B6: Let A be an n× n real matrix. For each integer k ≥ 0, let A[k] be the matrix obtained
by raising each entry of A to the k-th power. Show that if Ak = A[k] for k = 1, 2, . . . , n+ 1, then Ak = A[k]

for all k ≥ 1.
Hint: By linearity, the hypothesis implies that for every polynomial Q of degree ≤ n one has

(
Q(A)

)
i,j

=

Q(Ai,j). By the theorem of Cayley–Hamilton, A satisfies Pc(A) = 0, where Pc is the characteristic polynomial
Pc(λ) = det(λ I−A). One then has Pc(Ai,j) = 0 for all entries Ai,j . If P is any polynomial (like P (x) = xk for
an arbitrary value of k) then the Euclidean division algorithm gives P = PcQ1+Q2 with degree(Q2) ≤ n−1,
and P (A) = Q2(A), and P (Ai,j) = Q2(Ai,j) for all entries, hence

(
P (A)

)
i,j

= P (Ai,j) for all polynomials P

and all entries.
Notice that one does not need the hypothesis for k = n+ 1.

Of course, diagonal matrices have this property, but it is interesting to observe that there are non-

diagonal ones as well: for n = 2, since A =

(
a b
c d

)
implies A2 =

(
a2 + b c b (a+ d)
c (a+ d) d2 + b c

)
, so that A2 =(

a2 b2

c2 d2

)
means b c = 0, b2 = b (a + d), and c2 = c (a + d), and choosing b = 0 and c = a + d gives an

infinite family of non-diagonal solutions.

VTRMC 2009/5: Let A,B be 3 × 3 matrices with B 6= 0 and AB = 0. Prove that there exists a 3 × 3
matrix D such that AD = DA = 0.
[Of course, the question should ask that D be different from 0.]
Solution: Since the image of B is not restricted to {0}, the property of B is that its kernel is not restricted
to {0}. Then the image of A is not R3 since the dimension of the kernel ker(A) plus the dimension of the
image Im(A) is 3. One finds all solutions D by asking that D is 0 on Im(A), and on a supplement X of
Im(A), one defines D to take values in ker(A).
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As I mentioned, using the Cayley–Hamilton theorem, i.e. Pc(A) = 0 for the characteristic polynomial

Pc of A, does not always permit to take D = Q(A) for the polynomial Q(x) = Pc(x)
x , since for a matrix

A =

 0 1 0
0 0 0
0 0 0

 one has A2 = 0, and it that case it would give D = 0. One should then take Q(x) = Pmin(x)
x

for the minimal polynomial Pmin, which has the eigenvalue λ as a root with multiplicity equal to the geometric
multiplicity of that eigenvalue, and not the algebraic multiplicity.
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