Luc Tartar

Remarks, Putnam preparation, Thursday November 3
VTRMC 2010/1, modified: Let A be a $n \times n$ integer matrix. Suppose

$$
1+A+A^{2}+\cdots+A^{100}=0
$$

Show that $A^{k}+A^{k+1}+\cdots+A^{100}$ has determinant ± 1 for every positive integer $k \leq 100$.
Solution: One uses the fact that, since $\operatorname{det}\left(B_{1} B_{2}\right)=\operatorname{det}\left(B_{1}\right) \operatorname{det}\left(B_{2}\right)$, if B_{1}, B_{2} are integer matrices such that $\operatorname{det}\left(B_{1} B_{2}\right) \in\{-1,+1\}$, one deduces that $\operatorname{det}\left(B_{1}\right), \operatorname{det}\left(B_{2}\right) \in\{-1,+1\}$.

Multiplying $1+A+A^{2}+\cdots+A^{100}$ by $I-A$, one deduces that $I-A^{101}=0$, so that $\operatorname{det}(A)^{101}=$ $\operatorname{det}\left(A^{101}\right)=+1$, hence $\operatorname{det}(A)=+1$.

Then, since $(I+A)\left(I+A^{2}+A^{4}+\cdots+A^{98}+A^{100}\right)=I+A+A^{2}+\cdots+A^{100}+A^{101}=A^{101}$ has determinant +1 , one deduces that $\operatorname{det}(I+A) \in\{-1,+1\}$.

Then, since $\left(I+A+A^{2}\right)\left(I+A^{3}+A^{6}+\cdots+A^{96}+A^{99}\right)=I+A+A^{2}+\cdots+A^{100}+A^{101}=A^{101}$ has determinant +1 , one deduces that $\operatorname{det}\left(I+A+A^{2}\right) \in\{-1,+1\}$.

Then, since $\left(I+A+A^{2}+A^{3}\right)\left(I+A^{4}+A^{8}+\cdots+A^{96}+A^{100}\right)=I+A+A^{2}+\cdots+A^{102}+A^{103}=$ $A^{101}+A^{102}+A^{103}=A^{101}\left(1+A+A^{2}\right)$ has determinant $\in\{-1,+1\}$, then $\operatorname{det}\left(I+A+A^{2}+A^{3}\right) \in\{-1,+1\}$.

By induction, one deduces that for $1 \leq j \leq 99$ one has $\operatorname{det}\left(I+A+\cdots+A^{j}\right) \in\{-1,+1\}$, and this implies the desired result, since $\operatorname{det}\left(A^{k}+A^{k+1}+\cdots+A^{100}\right)=\operatorname{det}^{k}(A) \operatorname{det}\left(I+A+\cdots+A^{j}\right)$ for $j=100-k$.

Such an integer matrix A exists at least for n a multiple of 100 , since the characteristic polynomial of
the companion matrix $\left(\begin{array}{ccccc}0 & 1 & 0 & \ldots & 0 \\ 0 & 0 & 1 & \ldots & 0 \\ \vdots & & \ddots & \ddots & \vdots \\ 0 & 0 & 0 & \ldots & 1 \\ -c_{0} & -c_{1} & \ldots & \ldots & -c_{n-1}\end{array}\right)$ is $(-1)^{n}\left(c_{0}+c_{1} \lambda+\ldots+c_{n-1} \lambda^{n-1}+\lambda^{n}\right)$,
and by taking $n=100$ and all $c_{j}=1$ one obtains a desired integer matrix. I suppose that such an integer matrix mail only exist if n is a multiple of 100 .
Putnam 2010/B6: Let A be an $n \times n$ real matrix. For each integer $k \geq 0$, let $A^{[k]}$ be the matrix obtained by raising each entry of A to the k-th power. Show that if $A^{k}=A^{[k]}$ for $k=1,2, \ldots, n+1$, then $A^{k}=A^{[k]}$ for all $k \geq 1$.
Hint: By linearity, the hypothesis implies that for every polynomial Q of degree $\leq n$ one has $(Q(A))_{i, j}=$ $Q\left(A_{i, j}\right)$. By the theorem of Cayley-Hamilton, A satisfies $P_{c}(A)=0$, where P_{c} is the characteristic polynomial $P_{c}(\lambda)=\operatorname{det}(\lambda I-A)$. One then has $P_{c}\left(A_{i, j}\right)=0$ for all entries $A_{i, j}$. If P is any polynomial (like $P(x)=x^{k}$ for an arbitrary value of k) then the Euclidean division algorithm gives $P=P_{c} Q_{1}+Q_{2}$ with $\operatorname{degree}\left(Q_{2}\right) \leq n-1$, and $P(A)=Q_{2}(A)$, and $P\left(A_{i, j}\right)=Q_{2}\left(A_{i, j}\right)$ for all entries, hence $(P(A))_{i, j}=P\left(A_{i, j}\right)$ for all polynomials P and all entries.

Notice that one does not need the hypothesis for $k=n+1$.
Of course, diagonal matrices have this property, but it is interesting to observe that there are nondiagonal ones as well: for $n=2$, since $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ implies $A^{2}=\left(\begin{array}{cc}a^{2}+b c & b(a+d) \\ c(a+d) & d^{2}+b c\end{array}\right)$, so that $A^{2}=$ $\left(\begin{array}{ll}a^{2} & b^{2} \\ c^{2} & d^{2}\end{array}\right)$ means $b c=0, b^{2}=b(a+d)$, and $c^{2}=c(a+d)$, and choosing $b=0$ and $c=a+d$ gives an infinite family of non-diagonal solutions.
VTRMC 2009/5: Let A, B be 3×3 matrices with $B \neq 0$ and $A B=0$. Prove that there exists a 3×3 matrix D such that $A D=D A=0$.
[Of course, the question should ask that D be different from 0.]
Solution: Since the image of B is not restricted to $\{0\}$, the property of B is that its kernel is not restricted to $\{0\}$. Then the image of A is not \mathbb{R}^{3} since the dimension of the kernel $\operatorname{ker}(A)$ plus the dimension of the image $\operatorname{Im}(A)$ is 3 . One finds all solutions D by asking that D is 0 on $\operatorname{Im}(A)$, and on a supplement X of $\operatorname{Im}(A)$, one defines D to take values in $\operatorname{ker}(A)$.

As I mentioned, using the Cayley-Hamilton theorem, i.e. $P_{c}(A)=0$ for the characteristic polynomial P_{c} of A, does not always permit to take $D=Q(A)$ for the polynomial $Q(x)=\frac{P_{c}(x)}{x}$, since for a matrix $A=\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$ one has $A^{2}=0$, and it that case it would give $D=0$. One should then take $Q(x)=\frac{P_{\min }(x)}{x}$ for the minimal polynomial $P_{\text {min }}$, which has the eigenvalue λ as a root with multiplicity equal to the geometric multiplicity of that eigenvalue, and not the algebraic multiplicity.

