Luc Tartar

Remarks, Putnam preparation, Thursday September 8
2: Besides having entries ± 1, the transposed matrix $M=H^{T}$ must have orthogonal columns, so that $\left(M e_{i}, M e_{j}\right)=0$ for $i \neq j$, i.e. $M^{T} M$ should be diagonal. For $n=2$, one takes $M_{2}=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$ for example, so that $M_{2}^{T} M_{2}=2 I$. Assuming that M_{n} is an $n \times n$ matrix such that $M_{n}^{T} M_{n}=D_{n}$ is diagonal, then the $2 n \times 2 n$ matrix written in $n \times n$ blocks as $M_{2 n}=\left(\begin{array}{cc}M_{n} & -M_{n} \\ M_{n} & M_{n}\end{array}\right)$ satisfies $M_{2 n}^{T} M_{2 n}=\left(\begin{array}{cc}2 D_{n} & 0 \\ 0 & 2 D_{n}\end{array}\right)$, which is diagonal. Starting from M_{2} one then generates transposed of Hadamard matrices whose size is any power of 2 .

GA 22: Since 5^{2} is a square which can be written as a sum of 2 squares, because $5^{2}=3^{2}+4^{2}$, one deduces that $5^{2 m}$ is a square which can be written as a sum of j squares for $j=2, \ldots, 2^{m}$ for $m \geq 1$.

Indeed, if $5^{2 n}=a_{1}^{2}+\ldots+a_{j}^{2}$, then $5^{2 n+2}=5^{2} a_{1}^{2}+\ldots+5^{2} a_{j}^{2}$ and replacing some 5^{2} by $3^{2}+4^{2}$ one can write $5^{2 n+2}$ as a sum of k squares for $k=j, j+1, \ldots, 2 j$.
USAMO 1997/4: Such a matrix M does not exist if n is odd ≥ 3. There are at least $n-1$ integers which do not appear in the diagonal, and let a be one of them; if $a=M_{i, j}$ with necessarily $i \neq j$, then a cannot appear a second time in rows or columns of index i or j, and for a different index k, a must appear in row or column k, so that each time a appears it selects a pair in $\{1, \ldots, n\}$ and the union of these pairs must be $\{1, \ldots, n\}$, so that n must be even.

It seems to me that the following construction holds for n being any power of 2 . It is not important that the integers used be $\{1, \ldots, 2 n-1\}$ and one can use $\{-n+1, \ldots, n-1\}$, and one first constructs a symmetric $\operatorname{matrix} A_{n}$ with 0 in the diagonal, and positive entries outside the diagonal and such that each row contains all the integers from 0 to $n-1$, then the desired matrix is obtained by multiplying all the elements below the diagonal by -1 . If J_{n} denotes the $n \times n$ matrix with all entries 1 , and A_{n} has the preceding property, then the $2 n \times 2 n$ matrix $A_{2 n}$ written in $n \times n$ blocks as $\left(\begin{array}{cc}A_{n} & n J_{n}+A_{n} \\ n J_{n}+A_{n} & A_{n}\end{array}\right)$ satisfies the same property for the double size. Starting with $A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$ permits then to solve the question for all powers of 2.
Z. Feng 1997: For $a>0$, and $m \geq 1$, one defines $F_{m}(a)=\sqrt{a+\sqrt{4 a+\sqrt{4^{2} a+\ldots \sqrt{4^{m-1} a+\sqrt{4^{m a}}}}} \text {, so }}$ that $F_{m}(a)^{2}=a+F_{m-1}(4 a)$, and one may define $F_{0}(a)=\sqrt{a}$, so that the formula holds for $m \geq 1$.

By induction, one proves that $F_{m}(a)<\sqrt{a}+1$ for all $a>0$, since it is true for $m=0$, and if it is true for $m-1$, one deduces that $F_{m}(a)^{2}=a+F_{m-1}(4 a)<a+\sqrt{4 a}+1=(\sqrt{a}+1)^{2}$, so that $F_{m}(a)<\sqrt{a}+1$.

