Special Putnam Training

Po-Shen Loh

21 November 2010

Putnam 1999/B1. Right triangle $A B C$ has right angle at C and $\angle B A C=\theta$; the point D is chosen on $A B$ so that $|A C|=|A D|=1$; the point E is chosen on $B C$ so that $\angle C D E=\theta$. The perpendicular to $B C$ at E meets $A B$ at F. Evaluate $\lim _{\theta \rightarrow 0}|E F|$.

Putnam 1998/B2. Given a point (a, b) with $0<b<a$, determine the minimum perimeter of a triangle with one vertex at (a, b), one on the x-axis, and one on the line $y=x$. You may assume that a triangle of minimum perimeter exists.
Putnam 2000/B3. Let $f(t)=\sum_{j=1}^{N} a_{j} \sin (2 \pi j t)$, where each a_{j} is real and $a_{N} \neq 0$. Let N_{k} denote the number of zeros (including multiplicities) of $\frac{\partial^{k} f}{\partial t^{k}}$. Prove that

$$
N_{0} \leq N_{1} \leq N_{2} \leq \cdots \quad \text { and } \quad \lim _{k \rightarrow \infty} N_{k}=2 N
$$

Note: only zeroes in $[0,1)$ should be counted.
Putnam 2004/A4. Show that for any positive integer n, there is an integer N such that the product $x_{1} x_{2} \cdots x_{n}$ can be expressed identically in the form

$$
x_{1} x_{2} \cdots x_{n}=\sum_{i=1}^{N} c_{i}\left(a_{i 1} x_{1}+a_{i 2} x_{2}+\cdots+a_{i n} x_{n}\right)^{n}
$$

where the c_{i} are rational numbers and each $a_{i j}$ is one of the numbers $-1,0,1$.
Putnam 2004/B5. Evaluate

$$
\lim _{x \rightarrow 1^{-}} \prod_{n=0}^{\infty}\left(\frac{1+x^{n+1}}{1+x^{n}}\right)^{x^{n}}
$$

Putnam 2004/B6. Let \mathcal{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathcal{A} not exceeding x. Let \mathcal{B} denote the set of positive integers b that can be written in the form $b=a-a^{\prime}$ with $a \in \mathcal{A}$ and $a^{\prime} \in \mathcal{A}$. Let $b_{1}<b_{2}<\cdots$ be the members of \mathcal{B}, listed in increasing order. Show that if the sequence $b_{i+1}-b_{i}$ is unbounded, then

$$
\lim _{x \rightarrow \infty} \frac{N(x)}{x}=0
$$

