Special Putnam Training

Po-Shen Loh

18 November 2010

Putnam 1997/B1. Let $\{x\}$ denote the distance between the real number x and the nearest integer. Note that this is not the same as the "fractional" part of x, so this is not standard notation. For example, $\{\mathbf{1 . 7}\}=\mathbf{0 . 3}$. For each positive integer n, evaluate

$$
F_{n}=\sum_{m=1}^{6 n-1} \min \left(\left\{\frac{m}{6 n}\right\},\left\{\frac{m}{3 n}\right\}\right)
$$

Here, $\min (a, b)$ denotes the minimum of a and b.
Putnam 1999/A2. Let $p(x)$ be a polynomial that is nonnegative for all real x. Prove that for some k, there are polynomials $f_{1}(x), \ldots, f_{k}(x)$ such that

$$
p(x)=\sum_{j=1}^{k}\left(f_{j}(x)\right)^{2}
$$

Putnam 2000/A3. The octagon $A B C D E F G H$ is inscribed in a circle, with the vertices around the circumference in the given order. Given that the polygon $A C E G$ is a square of area 5 , and the polygon $B D F H$ is a rectangle of area 4 , find the maximum possible area of the octagon.
Putnam 2005/A4. Let H be an $n \times n$ matrix all of whose entries are ± 1 and whose rows are mutually orthogonal. Suppose H has an $a \times b$ submatrix whose entries are all 1 . Show that $a b \leq n$.

Putnam 2005/A5. Evaluate

$$
\int_{0}^{1} \frac{\ln (x+1)}{x^{2}+1} d x
$$

Putnam 2005/A6. Let $n \geq 4$ be given, and suppose that $P_{1}, P_{2}, \ldots, P_{n}$ are n randomly, independently and uniformly, chosen points on a circle. Consider the convex n-gon whose vertices are P_{i}. What is the probability that at least one of the vertex angles of this polygon is acute?

