Special Putnam Training

Po-Shen Loh

16 November 2010

Putnam 1995/A1. Let S be a set of real numbers which is closed under multiplication (that is, if a and b are in S, not necessarily distinct, then so is $a b$). Let T and U be disjoint subsets of S whose union is S. Given that the product of any three (not necessarily distinct) elements of T is in T, and that the product of any three (not necessarily distinct) elements of U is in U, show that at least one of the two sets T, U is closed under multiplication.

Putnam 2005/B2. Find all positive integers n, k_{1}, \ldots, k_{n} such that $k_{1}+\cdots+k_{n}=5 n-4$ and

$$
\frac{1}{k_{1}}+\cdots+\frac{1}{k_{n}}=1
$$

Putnam 1995/B3. To each positive integer with n^{2} decimal digits, we associate the determinant of the matrix obtained by writing the digits in order across the rows. For example, for $n=2$, to the integer 8617 we associate

$$
\operatorname{det}\left(\begin{array}{ll}
8 & 6 \\
1 & 7
\end{array}\right)=50
$$

Find, as a function of n, the sum of all the determinants associated with n^{2}-digit integers. (Leading digits are assumed to be nonzero; for example, for $n=2$, there are 9000 determinants.)

Putnam 1995/B4. Evaluate

$$
\sqrt[8]{2207-\frac{1}{2207-\frac{1}{2207-\ldots}}}
$$

Express your answer in the form $\frac{a+b \sqrt{c}}{d}$, where a, b, c, d are integers.
Putnam 2005/B5. Let $P\left(x_{1}, \ldots, x_{n}\right)$ denote a polynomial with real coefficients in the variables x_{1}, \ldots, x_{n}, and suppose that

$$
\left(\frac{\partial^{2}}{\partial x_{1}^{2}}+\cdots+\frac{\partial^{2}}{\partial x_{n}^{2}}\right) P\left(x_{1}, \ldots, x_{n}\right)=0 \quad \text { (identically) }
$$

and that

$$
x_{1}^{2}+\cdots+x_{n}^{2} \text { divides } P\left(x_{1}, \ldots, x_{n}\right)
$$

Show that $P=0$ identically.
Putnam 2005/B6. Let S_{n} denote the set of all permutations of the numbers $1,2, \ldots, n$. For $\pi \in S_{n}$, let $\sigma(\pi)=1$ if π is an even permutation and $\sigma(\pi)=-1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π. Show that

$$
\sum_{\pi \in S_{n}} \frac{\sigma(\pi)}{\nu(\pi)+1}=(-1)^{n+1} \frac{n}{n+1}
$$

