Even more advanced Putnam training

Po-Shen Loh
D-Day - 1

1 Problems

Putnam 2001/B4. Let S denote the set of rational numbers different from $\{-1,0,1\}$. Define $f: S \rightarrow S$ by $f(x)=x-\frac{1}{x}$. Prove or disprove that

$$
\bigcap_{n=1}^{\infty} f^{(n)}(S)=\emptyset
$$

where $f^{(n)}$ denotes f composed with itself n times.
Putnam 2008/A4. Define $f: \mathbb{R} \rightarrow \mathbb{R}$ by

$$
f(x)= \begin{cases}x & \text { if } x \leq e \\ x f(\ln x) & \text { if } x>e\end{cases}
$$

Does $\sum_{n=1}^{\infty} \frac{1}{f(n)}$ converge?
Putnam 2007/B4. Let n be a positive integer. Find the number of pairs P, Q of polynomials with real coefficients such that

$$
(P(x))^{2}+(Q(x))^{2}=x^{2 n}+1
$$

and $\operatorname{deg}(P)>\operatorname{deg}(Q)$.

