Even more advanced Putnam training

Po-Shen Loh

22 November 2010

1 Problems

Putnam 1995/B1. For a partition π of $\{1, \ldots, 9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π^{\prime}, there are two distinct numbers x and y in $\{1, \ldots, 9\}$ such that $\pi(x)=\pi(y)$ and $\pi^{\prime}(x)=\pi^{\prime}(y)$. [A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]

Putnam 1996/A2. Let C_{1} and C_{2} be circles whose centers are 10 units apart, and whose radii are 1 and 3. Find, with proof, the locus of all points M for which there exist points X on C_{1} and Y on C_{2} such that M is the midpoint of the line segment $X Y$.

Putnam 1996/B3. Given that $\left\{x_{1}, \ldots, x_{n}\right\}=\{1, \ldots, n\}$, find, with proof, the largest possible value, as a function of n (with $n \geq 2$), of

$$
x_{1} x_{2}+x_{2} x_{3}+\cdots+x_{n-1} x_{n}+x_{n} x_{1}
$$

