Even more advanced Putnam training

Po-Shen Loh

22 November 2010

1 Problems

- **Putnam 1995/B1.** For a partition π of $\{1, \ldots, 9\}$, let $\pi(x)$ be the number of elements in the part containing x. Prove that for any two partitions π and π' , there are two distinct numbers x and y in $\{1, \ldots, 9\}$ such that $\pi(x) = \pi(y)$ and $\pi'(x) = \pi'(y)$. [A partition of a set S is a collection of disjoint subsets (parts) whose union is S.]
- **Putnam 1996/A2.** Let C_1 and C_2 be circles whose centers are 10 units apart, and whose radii are 1 and 3. Find, with proof, the locus of all points M for which there exist points X on C_1 and Y on C_2 such that M is the midpoint of the line segment XY.
- **Putnam 1996/B3.** Given that $\{x_1, \ldots, x_n\} = \{1, \ldots, n\}$, find, with proof, the largest possible value, as a function of n (with $n \ge 2$), of

 $x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1.$