Even more advanced Putnam training

Po-Shen Loh

15 November 2010

1 Problems

- **Putnam 2000/A1.** Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_j^2$, given that x_0, x_1, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_j = A$?
- **Putnam 2004/A2.** Let T_1 be a triangle with side lengths a_1, b_1, c_1 , and let T_2 be an **acute** triangle with side lengths a_2, b_2, c_2 . Suppose that $a_1 \le a_2, b_1 \le b_2$, and $c_1 \le c_2$. Does it follow that $\operatorname{area}(T_1) \le \operatorname{area}(T_2)$?

Putnam 2004/A3. Define a sequence u_0, u_1, u_2, \ldots by $u_0 = u_1 = u_2 = 1$, and thereafter by the condition

$$\det \left(\begin{array}{cc} u_n & u_{n+1} \\ u_{n+2} & u_{n+3} \end{array}\right) = n!$$

for all $n \ge 0$. Show that u_n is an integer for all n. (By convention, 0! = 1.)