Even more advanced Putnam training

Po-Shen Loh

15 November 2010

1 Problems

Putnam 2000/A1. Let A be a positive real number. What are the possible values of $\sum_{j=0}^{\infty} x_{j}^{2}$, given that x_{0}, x_{1}, \ldots are positive numbers for which $\sum_{j=0}^{\infty} x_{j}=A$?
Putnam 2004/A2. Let T_{1} be a triangle with side lengths a_{1}, b_{1}, c_{1}, and let T_{2} be an acute triangle with side lengths a_{2}, b_{2}, c_{2}. Suppose that $a_{1} \leq a_{2}, b_{1} \leq b_{2}$, and $c_{1} \leq c_{2}$. Does it follow that area $\left(T_{1}\right) \leq \operatorname{area}\left(T_{2}\right)$?

Putnam 2004/A3. Define a sequence $u_{0}, u_{1}, u_{2}, \ldots$ by $u_{0}=u_{1}=u_{2}=1$, and thereafter by the condition

$$
\operatorname{det}\left(\begin{array}{cc}
u_{n} & u_{n+1} \\
u_{n+2} & u_{n+3}
\end{array}\right)=n!
$$

for all $n \geq 0$. Show that u_{n} is an integer for all n. (By convention, $0!=1$.)

