Even more advanced Putnam training

Po-Shen Loh

27 October 2010

1 Problems

Putnam 2006/B1. Show that the curve $x^{3}+3 x y+y^{3}=1$ contains only one set of three distinct points, A, B, and C, which are vertices of an equilateral triangle, and find its area.

Putnam 2007/A2. Find the least possible area of a convex set in the plane which touches both branches of the hyperbola $x y=1$ and both branches of $x y=-1$.

Putnam 2005/A3. Let $p(z)$ be a nonconstant polynomial of degree n, all of whose zeros have absolute value 1 in the complex plane. Put $g(z)=p(z) / z^{n / 2}$, where we have chosen the positive branch of the square root. Show that all zeros of $g^{\prime}(z)=0$ have absolute value 1 .

