Even more advanced Putnam training

Po-Shen Loh

20 October 2010

1 Problems

Putnam 1996/B1. Define a selfish set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1,2, \ldots, n\}$ which are minimal selfish sets, that is, selfish sets none of whose proper subsets is selfish.

Putnam 1998/A2. Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be the area of the region lying below s and above the x-axis, and let B be the area of the region lying to the right of the y-axis and to the left of s. Prove that $A+B$ depends only on the arc length, and not on the position, of s.

Putnam 2002/B3. Show that for all integers $n>1$,

$$
\frac{1}{2 n e}<\frac{1}{e}-\left(1-\frac{1}{n}\right)^{n}<\frac{1}{n e}
$$

