Even more advanced Putnam training

Po-Shen Loh

20 October 2010

1 Problems

- **Putnam 1996/B1.** Define a **selfish** set to be a set which has its own cardinality (number of elements) as an element. Find, with proof, the number of subsets of $\{1, 2, ..., n\}$ which are *minimal* selfish sets, that is, selfish sets none of whose proper subsets is selfish.
- **Putnam 1998/A2.** Let s be any arc of the unit circle lying entirely in the first quadrant. Let A be the area of the region lying below s and above the x-axis, and let B be the area of the region lying to the right of the y-axis and to the left of s. Prove that A + B depends only on the arc length, and not on the position, of s.

Putnam 2002/B3. Show that for all integers n > 1,

$$\frac{1}{2ne} < \frac{1}{e} - \left(1 - \frac{1}{n}\right)^n < \frac{1}{ne}.$$