# Even more advanced Putnam training 

Po-Shen Loh

13 October 2010

## 1 Problems

Putnam 2002/A1. Let $k$ be a fixed positive integer. The $n$-th derivative of $\frac{1}{x^{k}-1}$ has the form $\frac{P_{n}(x)}{\left(x^{k}-1\right)^{n+1}}$ where $P_{n}(x)$ is a polynomial. Find $P_{n}(1)$.

Putnam 1997/A2. Players $1,2,3, \ldots, n$ are seated around a table, and each has a single penny. Player 1 passes a penny to Player 2, who then passes two pennies to Player 3. Player 3 then passes one penny to Player 4, who passes two pennies to Player 5, and so on, players alternately passing one penny or two to the next player who still has some pennies. A player who runs out of pennies drops out of the game and leaves the table. Find an infinite set of numbers $n$ for which some player ends up with all $n$ pennies.

Putnam 2004/B3. Determine all real numbers $a>0$ for which there exists a nonnegative continuous function $f(x)$ defined on $[0, a]$ with the property that the region

$$
R=\{(x, y): 0 \leq x \leq a, 0 \leq y \leq f(x)\}
$$

has perimeter equal to its area.

