Even more advanced Putnam training

Po-Shen Loh

6 October 2010

1 Problems

Putnam 2005/A1. Show that every positive integer is a sum of one or more numbers of the form $2^{r} 3^{s}$, where r and s are nonnegative integers and no summand divides another. (For example, $23=9+8$ +6.$)$

Putnam 2001/A2. You have coins $C_{1}, C_{2}, \ldots, C_{n}$. For each k, C_{k} is biased so that, when tossed, it has probability $\frac{1}{2 k+1}$ of falling heads. If the n coins are tossed, what is the probability that the number of heads is odd? Express your answer as a rational function of n.

Putnam 2003/B3. Show that for each positive integer n,

$$
n!=\prod_{i=1}^{n} \operatorname{lcm}\{1,2, \ldots,\lfloor n / i\rfloor\}
$$

(Here, lcm denotes the least common multiple, and $\lfloor x\rfloor$ denotes the greatest integer $\leq x$.

