Even more advanced Putnam training

Po-Shen Loh

24 September 2010

Solution:

1 Announcements

- Wed next week
- CMU has only ever had max 2 in the HM.
- Scores required for HM, around the top 75 students.
- In order to make rank 70:

year	score
2009	53
2008	60
2007	48
2006	56
2005	49

Q	pts	
1	10	
2	10	
3	10	
4	1	
5	1	So if only solve 5 questions, get 56 points
6	1	
tot	33	

2 Problems

Putnam 2001/A1. Consider a set S and a binary operation $*$, i.e., for each $a, b \in S, a * b \in S$. Assume $(a * b) * a=b$ for all $a, b \in S$. Prove that $a *(b * a)=b$ for all $a, b \in S$.
Solution: FIX
Putnam 2001/B2. Find all pairs of real numbers (x, y) satisfying the system of equations

$$
\begin{aligned}
& \frac{1}{x}+\frac{1}{2 y}=\left(x^{2}+3 y^{2}\right)\left(3 x^{2}+y^{2}\right) \\
& \frac{1}{x}-\frac{1}{2 y}=2\left(y^{4}-x^{4}\right)
\end{aligned}
$$

Solution: FIX

Putnam 2001/A3. For each integer m, consider the polynomial

$$
P_{m}(x)=x^{4}-(2 m+4) x^{2}+(m-2)^{2} .
$$

For what values of m is $P_{m}(x)$ the product of two nonconstant polynomials with integer coefficients? Solution: FIX

