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A-1 Note that if r(x) and s(z) are any two functions, then

max(r,s) = (r+s+|r—s|)/2.

Therefore, if F'(x) is the given function, we have
F(z) = max{—3z — 3,0} — max{5z,0} + 3z + 2
=(-3z -3+ [3z+3|)/2
— (5x + [5z])/2 4+ 3z + 2

1
50/2| — 2 + =

=Bz +3)/2) - 3

so we may set f(x) =
h(z) = -z + 3.

3z + 3)/2, g(x) = 52/2, and

A-2 First solution: First factor p(z) = ¢(z)r(x), where ¢
has all real roots and r has all complex roots. Notice
that each root of ¢ has even multiplicity, otherwise p
would have a sign change at that root. Thus g(x) has a
square root s(z).

Now write r(z) = H?Il(:ﬁ — a;)(z — @) (possible
because r has roots in complex conjugate pairs). Write
]_[?:1(:5 —a;) = t(x) + iu(x) with ¢,z having real
coefficients. Then for x real,

p(z) = q(z)r(z)
= s(2)*(t(x) + iu(@))(t(z) + iu(z))
= (s(x)t(2))* + (s(x)u(x))*.

(Alternatively, one can factor r(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)

Second solution: We proceed by induction on the de-
gree of p, with base case where p has degree 0. As in
the first solution, we may reduce to a smaller degree
in case p has any real roots, so assume it has none.
Then p(x) > 0 for all real x, and since p(z) — oo
for z — 400, p has a minimum value c. Now p(z) — ¢
has real roots, so as above, we deduce that p(z) — c is
a sum of squares. Now add one more square, namely
(/€)% to get p(z) as a sum of squares.

A-3 First solution: Computing the coefficient of 2 *! in the
identity (1 — 2z — 2?) Y ~_,ama™ = 1 yields the
recurrence an4+1 = 2a, + an—1; the sequence {a,}
is then characterized by this recurrence and the initial

conditions ag = 1, a1 = 2.

Define the sequence {b,} by be, = a2 ; +

n—1

2
[£7e8 b2n+1 = an((ln,1 + an+1). Then

2bon+41 + ban = 2anan41 + 2an_10n + aifl + ai

2
= 2anan41 + AGn-1ant+1 + ay,

=a},, +a;, = banyo,

and similarly 2bs, + b2,—1 = ban41, so that {b,}
satisfies the same recurrence as {ay,}. Since further
bp = 1,b; = 2 (where we use the recurrence for {a,, }
to calculate a_; = 0), we deduce that b,, = a,, for all
n. In particular, a2 + a2 | = bapi2 = a2n42.

Second solution: Note that

1

1—2z — 22

1 V241
1_

) Vi
22 (14+v2)z

— (-2

and that

1 - n_.n
71+(1i\/§)x:;(1j:\/§) z

so that

((V2+ 1)t — (1= vt

apn =

2\f

A simple computation (omitted here) now shows that
ai + a?z-i—l = G2n+2.

Third solution (by Richard Stanley): Let A be the ma-
trix <(1) ;) . A simple induction argument shows that

An+2 — (7% Ap+1
Ap+4+1 Anp42

The desired result now follows from comparing the top
left corner entries of the equality A" 2 A" +2 = A2n+4,

A—4 Denote the series by S, and let a,, = 3" /n. Note that

o0
Z am(am +an)
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Z an(am +an)

n=1

M8

S:

Il
-
3

m

thg

3
I



3.4 Equations with Functions as Unknowns 189

543. Find all functions f : (0, o0) — (0, 0o) subject to the conditions

@A) f(f(f(x))+2x = f(3x), forall x > 0;
(i) limy oo (f(x) —x) = 0.

544. Suppose that f, g : R — R satisfy the functional equation

glx —y)=gx)gy)+ f(x)f(y)

for x and y in R, and that f () = 1 and g(¢) = O for some ¢ # 0. Prove that f and
g satisfy

gx+y)=gx)g(y) — f(x)f(y)

and

fxxy) = fx)gly) £8(x)f(y)
for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

fx+y)=f)+ fO).

We are looking for solutions f : R — R.

It is straightforward that f(2x) = 2 f(x), and inductively f(nx) = nf(x). Setting
y = nx, we obtain f (% y) = % f(y). In general, if m,n are positive integers, then
fE) =mf(;)="2f(1).

On the other hand, f(0) = f(0) + f(0) implies f(0) = 0, and 0 = f(0) =
f(x) + f(—x) implies f(—x) = — f(x). We conclude that for any rational number x,
fx) = f(x.

If f is continuous, then the linear functions of the form

fx) =cx,

where ¢ € R, are the only solutions. That is because a solution is linear when restricted
to rational numbers and therefore must be linear on the whole real axis. Even if we
assume the solution f to be continuous at just one point, it still is linear. Indeed, because
f(x + y) is the translate of f(x) by f(y), f must be continuous everywhere.

But if we do not assume continuity, the situation is more complicated. In set theory
there is an independent statement called the axiom of choice, which postulates that given
a family of nonempty sets (A;);¢s, there is a function f : I — U;A; with f(i) € A;. In
other words, it is possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers
(vectors are real numbers, scalars are rational numbers). A corollary of the axiom of
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choice (Zorn’s lemma) implies the existence of a basis for this vector space. If (e;);¢; is
this basis, then any real number x can be expressed uniquely as

X =rie, +re, +---+re,,

where ry, 1, ..., r, are nonzero rational numbers. To obtain a solution to Cauchy’s
equation, make any choice for f(e;), i € I, and then extend f to all reals in such a
way that it is linear over the rationals. Most of these functions are discontinuous. As an
example, for a basis that contains the real number 1, set /(1) = 1 and f(e;) = 0 for all
other basis elements. Then this function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

545. Let f : R — R be a continuous nonzero function, satisfying the equation

fx+y)=fx) f(y), forallx,yeR.

Prove that there exists ¢ > 0 such that f(x) = ¢* for all x € R.

546. Find all continuous functions f : R — R satisfying

Ja+y)=fx)+fO)+fx)f(y), foralx,yeR.
547. Determine all continuous functions f : R — R satisfying

J+fO)
L+ f)f()

548. Find all continuous functions f : R — R satisfying the condition

fx+y = forall x,y € R.

fxy) =xf(y)+yf(x), forallx,yecR.

549. Find the continuous functions ¢, f, g, h : R — R satisfying

dp(x+y+2)=fx)+ gy + h(2),

for all real numbers x, y, z.

550. Given a positive integer n > 2, find the continuous functions f : R — R, with the
property that for any real numbers x1, x2, ..., X,

Zf(xi)—Zf(xi-i-xj)-i' Z fOi+xj+x0)+---

i<j i<j<k

+ (=D o+ x4+ x,)=0.
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544. We should keep in mind that f(x) = sinx and g(x) = cos x satisfy the condition.
As we proceed with the solution to the problem, we try to recover some properties of sin x
and cos x. First, note that the condition f () = 1 and g(¢) = O for some ¢ % 0 implies
g(0) = 1; hence g is nonconstant. Also, 0 = g(t) = g(0)g() + f(O)f() = f(0);
hence f is nonconstant. Substituting x = 0 in the relation yields g(—y) = g(y), so g
is even.

Substituting y = ¢, we obtain g(x — r) = f(x), with its shifted version f(x +¢) =
g(x). Since g is even, it follows that f(—x) = g(x + ). Now let us combine these facts
to obtain

fx=y)=g&—y—0D=gx)g+)+ f)f(y+1)
=gX) f(=y)+ f(x)g(y).

Change y to —y to obtain f(x + y) = f(x)g(y) + g(x)f(y) (the addition formula
for sine).

The remaining two identities are consequences of this and the fact that f is odd. Let
us prove this fact. From g(x — (—y)) = g(x + y) = g(—x — y), we obtain

J@f(=y)=fO)f(=x)

forall x and y in R. Setting y = ¢ and x = —¢ yields f(—1)> = 1,s0 f(—t) = 1. The

choice f(—t) = 1 gives f(x) = f(x)f(—t) = f(—x)f(t) = f(—x); hence f is even.
But then

fa=y)=fx)g=y)+ 80 f(=y) = f(x)g(y) + &) f(y) = f(x + ),

for all x and y. For x = ”T“’, y = 5%, we have f(z) = f(w), and so f is constant, a
contradiction. For f(—t) = —1, we obtain f(—x) = —f(—x) f(—t) = —f(x) f(t) =
— f(x); hence f is odd. It is now straightforward that

fx—=y)=f)gly) +gx)f(=y) = f(x)g(y) —gx)f(y)

and

gx+y) =g(x — (=) =g(x)g(=y) + f(x) f(=y) = g(x)g(y) — fF(x) f(y),

where in the last equality we also used the fact, proved above, that g is even.
(American Mathematical Monthly, proposed by V.L. Klee, solution by P.L. Kannap-

pan)
545. Because f(x) = f?(x/2) > 0, the function g(x) = In f(x) is well defined. It

satisfies Cauchy’s equation and is continuous; therefore, g(x) = ax for some constant
. We obtain f(x) = ¢*, with ¢ = €*.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one contin-
uous function is automatically monotonic. So if we can read from a functional equation
that a function, which is assumed to be continuous, is also one-to-one, then we know that
the function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R — R satisfying (f o f o f)(x) = x for
all x € R.

Solution. For any x € R, the image of f(f(x)) through f is x. This shows that f is
onto. Also, if f(x1) = f(xz) then x; = f(f(f(x1)) = f(f(f(x2))) = x2, which
shows that f is one-to-one. Therefore, f is a continuous bijection, so it must be strictly
monotonic. If f is decreasing, then f o f is increasing and f o f o f is decreasing,
contradicting the hypothesis. Therefore, f is strictly increasing.

Fix x and letus compare f(x) and x. There are three possibilities. First, we could have
f(x) > x. Monotonicity implies f(f(x)) > f(x) > x, and applying f again, we have
x = f(f(f(x) > f(f(x)) > f(x) > x, impossible. Or we could have f(x) < x,
which then implies f(f(x)) < f(x) <x,and x = f(f(f(x))) < f(f(x)) < f(x) <
x, which again is impossible. Therefore, f(x) = x. Since x was arbitrary, this shows
that the unique solution to the functional equation is the identity function f(x) =x. O

551. Do there exist continuous functions f, g : R — R such that f(g(x)) = x* and
g(f(x)) = x> forall x € R?

552. Find all continuous functions f : R — R with the property that
f(f(x)—2f(x)+x=0, forallxeR.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, be-
cause practically every evolutionary phenomenon of the real world can be modeled by
a differential equation. This section is about first-order ordinary differential equations,
namely equations expressed in terms of an unknown one-variable function, its derivative,
and the variable. In their most general form, they are written as F (x, y, y') = 0, but we
will be concerned with only two classes of such equations: separable and exact.

An equation is called separable if it is of the form Z—i = f(x)g(y). In this case we
formally separate the variables and write

fd—y —ff(x)dx
g(y) '

After integration, we obtain the solution in implicit form, as an algebraic relation between
x and y. Here is a problem of 1.V. Maftei from the 1971 Romanian Mathematical
Olympiad that applies this method.
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0
= % —((x' — X+ =y =2 Pd =0,
Cr 8Z

where the last equality is a consequence of the fundamental theorem of calculus. Of the

two, only % has a dx’ in it, and that part is

30 (x—x)V 4+ —y) 4@ —-2))x —x')(z —2)dx'
Cy
0 z—7
— _— dx' = 0.
f& I (=P +G—yP+ G-

The term involving dy’ is treated similarly. The conclusion follows.

Remark. The linking number is, in fact, an integer, which measures the number of times
the curves wind around each other. It was defined by C.F. Gauss, who used it to decide,
based on astronomical observations, whether the orbits of certain asteroids were winding
around the orbit of the earth.

535. Plugging in x = y, we find that f(0) = 0, and plugging in x = —1, y = 0, we find
that f(1) = —f(—1). Also, plugginginx =a,y = 1, and then x = a, y = —1, we
obtain
f@ =1 =@-D(f@+ f),
f@ =1 =@+ D(f(a)— f(Q1).
Equating the right-hand sides and solving for f(a) gives f(a) = f(1)a for all a.
So any such function is linear. Conversely, a function of the form f(x) = kx clearly

satisfies the equation.
(Korean Mathematical Olympiad, 2000)

536. Replace z by 1 — z to obtain
fAd=2+0-2)f()=2—2z
Combine this with f(z) + zf (1 — z) = 1 + z, and eliminate f (1 — z) to obtain
(Il—z+Df@=1—z+2".

Hence f(z) = 1 for all 7 except maybe for z = e*™/3, when 1 — z + z> = 0. For

=3, @ =a’>=1—a;hence f(a)+af(@) = 1+ a. We therefore have only one
constraint, namely f(a¢) = [l 4+« — f(a)]/e = a + 1 — a f(«a). Hence the solution to
the functional equation is of the form

f@) =1 forz#e ™,



a, b are complex numbers satisfying a% + b? = 1. Thereforeb = (1—a?)%/2
(where the exponent 1/2 means one of the two complex numbers whose
square is 1 — a?). We conclude that the matrices satisfying A= A' = A1

a (1—a?)1/? :
are £l and (1—a?)L2 4 where a is any complex number.

. Set R=e?"/7 = cos2m/7+isin2m/7. Since R+ 1 and R” = 1, we see that

1+R+---+ R =0. Now for n an integer, R" = cos2nrt/7 +isin2nm/7.
Thus by taking the real parts and using cos(2m— x) = cosx, Cos(Tt— X) =
— COSX, We obtain

211 Tt 31
1+ 20057 — 2cos7 — 20057 =0.

Since cosTt/ 7+ cos3rt/ 7 = 2cos(211/7)(cosTt/ 7), the above becomes

2 T 21
40057 cos? — 20057 =-1
Finally cos(211/7) = 2cos?(11/7) — 1, hence (2c0s?(11/7) — 1) (4cos(T/7) —
2) = —1 and we conclude that 8cos®(11/7) — 4c0s?(Tt/7) — 4cos(T1/7) =
—1. Therefore the rational number required is —1/4.

. Since ZABC + ZPQC = 90 and ZACB+ Z/PRB = 90, we see that Z/QPR =
ZABC + ZACB. Now X,Y,Z being the midpoints of BC, CA, AB respec-
tively tellsusthat AY isparalel to ZX, AZ isparallel to XY, and BX isparal-
lel toYZ. Wededucethat /ZXY = /BAC and hence ZQPR+ /ZXY = 180.
Therefore the points P, Z, X, Y lie on a circle and we deduce that ZQPX =
/ZYX. Using BZ parallel to XY and BX parallel to ZY from above, we con-
cludethat Z/ZYX = ZABC. Therefore ZQPX + ZPQX = ZABC+ ZPQX =
90 and the result follows.

. Set g = f2. Note that g is continuous, g3(x) = x for al x, and f(x) = x
for al x if and only if g(x) = x for al x. Supposey € [0,1] and f(y) #

y. Then the numbersyy, f(y), f2(y) are distinct. Replacing y with f(y) or
f2(y) and f with g if necessary, we may assume that y < f(y) < f2(y).
Choose a c (f(y), f2(y)). Since f is continuous, there exists p € (y, f(y )
and q € (f(y), f%(y)) such that f(p) =a= f(q). Thus f(p) = f(q), hen
3(p) = £3(q) and we deduce that p = g. This s a contradiction because

p < f(y) < q, and theresult follows.



at Q2 and proceeding counterclockwise must contain
all of Qs,...,Q,, while the open semicircle starting
at Q; and proceeding counterclockwise must contain
Qiv1y---Qn,Q1,...,Q;—1. Thus two open semicir-
cles cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive verticé€y,, Q> in counter-
clockwise order for whicl¥ (s is acute and’Q; is not
acute. Then the remaining points all lie in the arc from
the antipode of); to 1, but @, cannot lie in the arc,
and the remaining points cannot all lie in the arc from
the antipode of); to the antipode of),. Given the
choice ofQ1, 2, let z be the measure of the counter-
clockwise arc from); to @)2; then the probability that
the other points fall into position i87"*+2 — z"—2 if

x < 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with givenchoice of which two points will
act as); andQ@s is

1/2 _
/ (272 — ") do = n-=e 22‘"“.
0 n—1
Since there are(n — 1) choices for which two points
act as@); and(Q,, the probability of at least one acute
angle isn(n — 2)2= "
Second solution: (by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the point§), the angle af); is not acute but
the following angle is, and then multiply by. Imagine
picking the points by first choosing@,, then picking
n — 1 pairs of antipodal points and then picking one
member of each pair. Le®,,..., R, be the points of
the pairs which lie in the semicircle, taken in order away
from @1, and letSs,, ..., S, be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of ti&, and we
cannot takeR,, and the otherS; or elseZQ; will be
acute. That gives us: — 2) good choices out df”~!;
since we could have choséh to be any of the: points,
the probability is agaim(n — 2)277+1,

Bl Take P(z,y) = (y — 2x)(y — 2z — 1). To see that

this works, first note that ifn = |a], then2m is an
integer less than or equal &, so2m < |2a|. On
the other handy + 1 is an integer strictly greater than
a, S02m + 2 is an integer strictly greater th&w, so
[2a] <2m + 1.

B2 By the arithmetic-harmonic mean inequality or the

Cauchy-Schwarz inequality,

1 1
4+ =) >n2
(it dn) <k1 " +kn> ="

We must thus havén — 4 > n2, son < 4. Without
loss of generality, we may suppose that< - -- < k,,.

4

If n =1, we must havé; = 1, which works. Note that
hereafter we cannot havg = 1.

If n =2, we have(ky, k2) € {(2,4), (3,3)}, neither of
which work.

If n = 3, we havek; + ks + k3 = 11,
so 2 < ki < 3. Hence (ki,k2,k3) €
{(2,2,7),(2,3,6),(2,4,5),(3,3,5), (3,4,4)}, and
only (2, 3,6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens wheky, = ky = k3 = k4 = 4.
Hence the solutions are = 1 andk; = 1, n = 3 and

(k1, k2, ks) is a permutation of2, 3,6), andn = 4 and

(k1, ko, ks, kq) = (4,4,4,4).

Remark: In the cases = 2,3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tionsofl/k1+---+1/k, = 1withky <--- < k,. This

is easily done by proceeding in lexicographic order: one
obtains(2, 2) for n = 2, and(2, 3, 6), (2,4,4), (3,3, 3)

for n = 3, and only(2, 3, 6) contributes to the final an-
swer.

B3 First solution: The functions are precisef(z) = cx?

for ¢,d > 0 arbitrary except that we must take= 1

in cased = 1. To see that these work, note that
f'(a/x) = dc(a/x)? ! andz/f(x) = 1/(cx?™1), so
the given equation holds if and only i2a?~! = 1.

If d # 1, we may solve form no matter what is; if

d = 1, we must have = 1. (Thanks to Brad Rodgers
for pointing out thed = 1 restriction.)

To check that these are all solutions, put log(a) and
y = log(a/z); rewrite the given equation as

F(E) /() = v,
Put

9(y) = log f(e?);
then the given equation rewrites as

g(b—y) +logg'(y) +g(y) —y=0b—y,

or

logg'(y) =b—g(y) —g(b—y).

By the symmetry of the right side, we hay&b — y) =

¢'(y). Hence the functiory(y) + g(b — y) has zero
derivative and so is constant, as theryigy). From
this we deduce thaf(z) = cx? for somec,d, both
necessarily positive sincg(x) > 0 for all .

Second solution:(suggested by several people) Substi-
tutea/x for x in the given equation:

f@) =

zf(a/z)
Differentiate:

neoy _ a’f'(a/x)
f(z) = + :c3f(a/x)2'

~22f(a/)



Now substitute to eliminate evaluationsagtz:

o

f(a) =~
Clear denominators:

e f(@)f" (@) + fx)f'(2) = 2 f'(x)*.
Divide through byf(x)? and rearrange:
fl@)  zf"(@) zf(@)?
f)  f(=) f(x)?

The right side is the derivative off’(x)/ f(z), so that
quantity is constant. That is, for sordg

fx) _d

0=

fl@) 2
Integrating yieldsf (z) = cz?, as desired.

B4 First solution: Define f(m,n, k) as the number of-
tuples(zy, za, . . ., z,) of integers such that |+ - -+
|z,| < m and exactlyk of 21, ...,z, are nonzero. To
choose such a tuple, we may chooseftim®nzero posi-
tions, the signs of thosenumbers, and then an ordered
k-tuple of positive integers with surd m. There are
(%) options for the first choice, argf for the second.
As for the third, we have}') options by a “stars and
bars” argument: depict the-tuple by drawing a num-

ber of stars for each term, separated by bars, and adding

stars at the end to get a totalof stars. Then each tu-
ple corresponds to placing bars, each in a different
position behind one of the: fixed stars.

We conclude that

f(m.n. k) =24 (T,’j) (’;) = f(n.m. k);

summing overk gives f(m,n) = f(n,m). (One may
also extract easily a bijective interpretation of the equal-
ity.)

Second solution: (by Greg Kuperberg) It will be con-
venient to extend the definition ¢gim,n) tom,n > 0,

in which case we havg(0,m) = f(n,0) = 1.

Let S, be the set of-tuples(zy,...,z,) of inte-
gers such thafzq| + - - - + |z,| < m. Then elements
of S,, » can be classified into three types. Tuples with
|z1] + -+ + |z| < m also belong ta5,,_1,,. Tuples
with |z1| + -+ + |z,| = m andz, > 0 correspond
to elements ofS,, ,_1 by droppingz,,. Tuples with
|z1| + -+ + |zn| = m andz, < 0 correspond to ele-
ments ofS,,,_1 ,—1 by droppingz,,. It follows that

f(m,n)
=fm—-1n)+ f(mn—1)+ f(m—1,n—-1),

so f satisfies a symmetric recurrence with symmetric
boundary conditiong'(0,m) = f(n,0) = 1. Hencef
is symmetric.

5

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allowf (m,0) = f(0,n) = 1.
Define the generating function

G(z,y) = Z Zf(m, n)xmy".

m=0n=0

As equalities of formal power series (or convergent se-
ries on, say, the regio|, |y| < %), we have

Glay) =) > a™y" > 1

m>0n>0 ki,...,kn€Z

[k1]+-+]kn|<m
— n
= v
ki,...,kn€Z m>\ky|++|kn|

>
n>0
|+ -+ ke
., | [
=D —

ki,..., kn€Z

n>0
1 n
n |k|
()
n>0 keZ
1 L 1+z\"
o (i)
n>0
1 1
l—z 1-y(l+2)/(1—2)
1
l—z—y—ay

1—2x

SinceG(z,y) = G(y,x), it follows that f(m,n) =
f(n,m) forallm,n > 0.

B5 First solution: PutQ = z% 4+ --- 4+ 22. SinceQ is
homogeneous? is divisible by if and only if each of
the homogeneous componentddis divisible by@. It
is thus sufficient to solve the problem in caRétself is
homogeneous, say of degrée

Suppose that we have a factorizatibh= Q™R for
somem > 0, whereR is homogeneous of degrdeand
not divisible by@; note that the homogeneity implies
that

ix-aR =dR.

1
ox;
i=1 v

. 2 2
Write V2 as shorthand fo% +. 4 %%; then

0=V?P
1 OR

=2mnQ™ 'R+ Q™V?R + 2 Z 2mz; Q™ ErS

i=1
=Q™V2R + (2mn + 4md)Q™ ' R.
Sincem > 0, this forcesR to be divisible by@, con-
tradiction.

Second solution:(by Noam Elkies) Retain notation as
in the first solution. LetP; be the set of homogeneous



An alternate approach is to first rewrde x sin 22 as

3 (cos(a? — x) — cos(z® + x). Then

2w +1 |P

sin(z? + ) |,
_/B 2sin(z? + x) d
o (2z+4+1)2

B
/ cos(z? + x) dr = —
0

converges absolutely, arj[f cos(z%—x) can be treated
similarly.

Leta, b, c be the distances between the points. Then the
area of the triangle with the three points as vertices is
abe/4r. On the other hand, the area of a triangle whose
vertices have integer coordinates is at least 1/2 (for ex-
ample, by Pick's Theorem). Thugc/4r > 1/2, and

so

max{a, b, c} > (abe)t/? > (2r)1/3 > r1/3,

Recall that iff () is a polynomial with integer coeffi-
cients, thenn —n divides f(m) — f(n) for any integers
m andn. In particular, if we pub,, = a,,4+1 — a,, then
by, dividesb,; for all n. On the other hand, we are
given thatug = a,, = 0, which implies thati; = a1
and sobg = b,,. If by = 0, thenag = a; = ---
and we are done. Otherwiség| = |b1]| = |bo| = - - -,
sob,, = +by for all n.

Now by + -+ + b1 = am — ag = 0, so half of the
integersy, . . ., b,,—1 are positive and half are negative.
In particular, there exists an integeér< k& < m such
thatb,_; = —by, which is to saya,_1 = ax41. From
this it follows thata,, = a,42 foralln > k& — 1; in
particular, form = n, we have

:am

ap = Gm = Am42 = f(f(ao)) = as.

B—1 Consider the seven triplés, b, ¢) with a,b,c € {0,1}

not all zero. Notice thatif;, s;,¢; are not all even, then
four of the sumsur; + bs; + ct; with a,b,c € {0, 1}
are even and four are odd. Of course the sum with

a =0b=c=0is even, so at least four of the seven B—4 Fort real and not a multiple of, write g(t)

triples with a, b, ¢ not all zero yield an odd sum. In
other words, at leastN of the tuples(a, b, ¢, j) yield
odd sums. By the pigeonhole principle, there is a triple
(a, b, ) for which at leastt N/7 of the sums are odd.

B-2 Sinceged(m,n) is an integer linear combination of

andn, it follows that

gcd(z% n) (:)

is an integer linear combination of the integers

)= (o) e ()= ()

and hence is itself an integer.

B-3 Putfy(t) = 4

o+ Recall Rolle’s theorem: if (¢) is dif-
ferentiable, then between any two zeroes ¢f) there
exists a zero of'(t). This also applies when the zeroes
are not all distinct: iff has a zero of multiplicityn at
t = z, thenf’ has a zero of multiplicity at least — 1
there.

Therefore, if0 < a9 < a1 < --- < a, < 1 are the
roots of fi in [0,1), then f;; has a root in each of
the intervals(ag, a1), (a1, a2), ..., (ar—1,a,), SO long
as we adopt the convention that the empty intefwal)
actually contains the pointitself. There is also a rootin
the “wraparound” intervala,., ag). ThusNy1 > Ny.

Next, note that if we set = ¢2™; then

N

fan(t) = 5 37 a7 — +79)

Jj=1

is equal toz~" times a polynomial of degregN.
Hence as a function of, it has at mos2N roots;
thereforef,(t) has at mosgN roots in[0, 1]. That s,
N, < 2N forall N.

To establish thafv, — 2N, we make precise the ob-
servation that

N
fe(t) = Zj‘lkaj sin(2mjt)
j=1

is dominated by the term with = N. At the points
t=(2+1)/(2N)fori =0,1,...,N — 1, we have
N*qysin(2rNt) = £N*ay. If k is chosen large
enough so that

‘CLN‘]VAUC > |a1|14k + -+ ‘CEN_1|(N — 1)4167

then f,((2¢ + 1)/2N) has the same sign as
ay sin(2rNat), which is to say, the sequence
fx(1/2N), fr(3/2N), ... alternates in sign. Thus be-
tween these points (again including the “wraparound”
interval) we find2N sign changes off,. Therefore
limk*)oo Nk =2N.

_ f(cost)

~  sint
Theng(t + m) = g(¢); furthermore, the given equation
implies that

f(2cos?t —1)

9(2) = sin(2t) -

2(cost) f(cost)
sin(2t)

= g(t).
In particular, for any integer andk, we have
g(1+nm/2%) = g(2" + nm) = g(2%) = g(1).

Since f is continuousg is continuous where it is de-
fined; but the sefl + nr/2%|n, k € Z} is dense in the
reals, and s@ must be constant on its domain. Since
g(—t) = —g(t) for all ¢, we must have/(t) = 0 whent

is not a multiple ofr. Hencef(z) = 0 forz € (—1,1).
Finally, settingr = 0 andx = 1 in the given equation
yields f(—1) = f(1) = 0.



k? —k+1<mn < k?+ k. Hence

© on) 4 9—(n) & +2 (n)
I YD M
n=1 k=1n(n)=k

00 k2+k

2k 49—k
=2 2 5
k=1n=k2-k+1

= DT 2k

k=1

— Z(2—k(k—2) _ 2—k(k+2))

k=1

— 2—k(k—2) _ Z 2—k k-2
k=1 k=3

8

= 3.
Alternate solut10n rewrlte the sum as
Yo 27 )3 (), Note that (n) #
(n+ 1) 1f and only if 7 n = m? + m for some m.

Thus n + (n) and n — <n> each increase by 1 except at
n = m? 4+ m, where the former skips from m? 4 2m to
m? 4+ 2m + 2 and the latter repeats the value m?. Thus
the sums are

i 2—”—§: 2—m2+§: 2—”+§: 27" =241 =3,
n=1 m=1 n=0 m=1

B—4 For a rational number p/q expressed in lowest terms,

define its height H(p/q) to be |p| + |¢q|. Then for
any p/q € S expressed in lowest terms, we have
H(f(p/q9)) = l9*> — p*| + |pq|; since by assumption
p and ¢ are nonzero integers with |p| # |¢|, we have

H(f(p/9)) — H(p/q) = la* = p*| + Ipal — Ip] — |4l
>3+ |pgl — [pl = lql
=(pl=D(gl-1)+2>2.

It follows that f(*)(S) consists solely of numbers of
height strictly larger than 2n 4 2, and hence

Note: many choices for the height function are possible:
one can take H(p/q) = max|p|,|q|, or H(p/q) equal
to the total number of prime factors of p and ¢, and so
on. The key properties of the height function are that
on one hand, there are only finitely many rationals with
height below any finite bound, and on the other hand,
the height function is a sufficiently “algebraic” function
of its argument that one can relate the heights of p/q

and f(p/q).

B-5 Note that g(z) = g(y) implies that g(g(z)) = g(9(v))

and hence z = y from the given equation. That is, g is

injective. Since g is also continuous, g is either strictly
increasing or strictly decreasing. Moreover, g cannot
tend to a finite limit L as x — +o0o, or else we’d have
g(g(z)) — ag(x) = bz, with the left side bounded and
the right side unbounded. Similarly, g cannot tend to a
finite limit as * — —oo. Together with monotonicity,
this yields that g is also surjective.

Pick z( arbitrary, and define z,, for all n € Z recur-
sively by zp41 = g(zn) forn > 0, and z,_1 =
g Y(xn) forn < 0. Let 1y = (a + Va2 +4b)/2
and r9 = (a — Va? +4b)/2 and ry be the roots of
2?2 —ar —b = 0,sothatr; > 0 > ryand 1 >
|r1| > |r2|. Then there exist ¢1,¢co € R such that
xp =cri +corf foralln € Z.

Suppose g is strictly increasing. If ¢; # 0 for some
choice of zg, then z,, is dominated by 73 for n suffi-
ciently negative. But taking z, and z,4> for n suffi-
ciently negative of the right parity, we get 0 < z, <
Zpya but g(z,) > g(xn42), contradiction. Thus ¢y =
0; since g = ¢1 and z1 = ¢171, we have g(z) = riz
for all z. Analogously, if g is strictly decreasing, then
ca = 0 or else z, is dominated by 77 for n sufficiently
positive. But taking z,, and z, 4 for n sufficiently pos-
itive of the right parity, we get 0 < z,42 < z, but
9(Zn42) < g(zy), contradiction. Thus in that case,
g(z) = rox for all z.

B-6 Yes, there must exist infinitely many such n. Let S be

the convex hull of the set of points (n, a,) for n > 0.
Geometrically, S is the intersection of all convex sets
(or even all halfplanes) containing the points (n, a,);
algebraically, S is the set of points (z,y) which can
be written as ¢1(n1, an,) + - - - + ¢k (nk, an, ) for some
¢1, ..., ck which are nonnegative of sum 1.

We prove that for infinitely many n, (n, a,) is a vertex
on the upper boundary of S, and that these n satisfy the
given condition. The condition that (n, a,) is a vertex
on the upper boundary of S is equivalent to the exis-
tence of a line passing through (n, a,) with all other
points of S below it. That is, there should exist m > 0
such that

ag < ap + m(k —n) Yk > 1. (1

We first show that n = 1 satisfies (1). The condition
ax/k — 0 as k — oo implies that (ax —a1)/(k—1) —
0 as well. Thus the set {(ag —a1)/(k—1)} has an upper
bound m, and now ay < a; + m(k — 1), as desired.

Next, we show that given one n satisfying (1), there
exists a larger one also satisfying (1). Again, the con-
dition ax/k — 0 as k — oo implies that (ax —
a,)/(k —n) — 0 as k — oo. Thus the sequence
{(ax —an)/(k —n)}r>n has a maximum element; sup-
pose k = r is the largest value of £ that achieves this
maximum, and put m = (a, — a,)/(r — n). Then the
line through (7, a,.) of slope m lies strictly above (k, a)
for k > r and passes through or lies above (k, ay) for
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fe™? =B,
fle™ ™ =a+1—ap,

where S is an arbitrary complex parameter.
(20th W.L. Putnam Competition, 1959)

537. Successively, we obtain

ren=1(=5)=r(-3) == jm s (=) = ro.

Hence f(x) = f(0) forx € {0, —1, -1, ..., =1 ..}

~1i
Ifx #0,—1,...,—L1 ... replacing x by r+ in the functional equation, we obtain

X B = _
() () -0

And this can be iterated to yield

X
f(l+nx)=f(x), n=123....

Because f is continuous at O it follows that

f@) = lim f (1 +nx) = fO.

This shows that only constant functions satisfy the functional equation.
538. Pluggingin x = ¢,y =0, z = 0 gives
F@+ f0)+ f(1) =3f(),

or f(0) > f(z) for all real numbers 7. Plugginginx = 5,y = §,z = —5 gives

J@) + fO) + f(0) =3£(0),

or f(t) > f(0) for all real numbers . Hence f(t) = f(0) for all #, so f must be
constant. Conversely, any constant function f clearly satisfies the given condition.
(Russian Mathematical Olympiad, 2000)

539. No! In fact, we will prove a more general result.
Proposition. Let S be a set and g : S — S a function that has exactly two fixed points

{a, b} and such that g o g has exactly four fixed points {a, b, c,d}. Then there is no
Sfunction f : S — S such that g = f o f.
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Proof. Let g(c) = y. Then ¢ = g(g(c)) = g(y); hence y = g(c) = g(g(y)). Thus y is
a fixed pointof go g. If y = a, thena = g(a) = g(y) = ¢, leading to a contradiction.
Similarly, y = b forces ¢ = b. If y = ¢, then ¢ = g(y) = g(¢), so c is a fixed point of
g, again a contradiction. It follows that y = d, i.e., g(¢) = d, and similarly g(d) = c.

Suppose there is f : S — Ssuchthat fo f =g. Then fog= fofof=gof.
Then f(a) = f(g(a)) = g(f(a)), so f(a) is a fixed point of g. Examining case by
case, we conclude that f({a, b}) C {a, b} and f({a, b, c,d}) C {a, b, c,d}. Because
f o f = g, the inclusions are, in fact, equalities.

Consider f(c). If f(c) = a, then f(a) = f(f(c)) = g(c) = d, a contradiction
since f(a) isin {a, b}. Similarly, we rule out f(c) = b. Of course, c is not a fixed point
of f, since it is not a fixed point of g. We are left with the only possibility f(c) = d.
But then f(d) = f(f(c)) = g(c) = d, and this again cannot happen because d is not a
fixed point of g. We conclude that such a function f cannot exist.

In the particular case of our problem, g(x) = x> — 2 has the fixed points —1 and
2, and g(g(x)) = (x> —2)> — 2 has the fixed points —1, 2, _142“/5, and —1;\5. This
completes the solution.

(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism
Books PVT Ltd., 2002)

540. The standard approach is to substitute particular values for x and y. The solution
found by the student S.P. Tungare does quite the opposite. It introduces an additional
variable z. The solution proceeds as follows:

fx+y+2)
= f) f(y+2) —csinxsin(y + 2)
= fX)If(y)f(z) —csinysinz] — csinx sin ycosz — ¢ Sinx cos y sin z

=f(x)f(y)f(z) —cf(x)sinysinz — csinx sin y cosz — ¢ sin x cos y sin z.
Because obviously f(x +y 4+ z) = f(y + x + z), it follows that we must have
sinz[ f(x)siny — f(y)sinx] = sin z[cos x sin y — cos y sin x].
Substitute z = 7 to obtain
f(x)siny — f(y)sinx = cosx siny — cos y sin x.

For x = 7 and y not an integer multiple of 7, we obtain sin y[ f(7r) 4+ 1] = 0, and hence

f(r) = —1.

Then, substituting in the original equation x = y = 7 yields

o=l (3)] -«
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It follows that f(x + x,) — f(x) is a polynomial of degree n — 2 for all x,. In
particular, there exist polynomials P;(x) and P,(x) such that f(x + 1) — f(x) = P (x),
and f(x + V2) — f(x) = P,(x). Note that for any a, the linear map from the vector
space of polynomials of degree at most n — 1 to the vector space of polynomials of
degree at mostn — 2, P(x) — P(x + a) — P(x), has kernel the one-dimensional space
of constant polynomials (the only periodic polynomials). Because the first vector space
has dimension n and the second has dimension n — 1, the map is onto. Hence there exist
polynomials Q;(x) and Q»(x) of degree at most n — 1 such that

Qi(x +1) = 01(x) = P(x) = f(x + 1) — fx),
02(x +V2) — 02(x) = Pa(x) = f(x ++2) — f(x).

We deduce that the functions f (x)—Q;(x) and f (x)— Q»(x) are continuous and periodic,
hence bounded. Their difference O (x)— Q»(x) is abounded polynomial, hence constant.
Consequently, the function f(x) — Q;(x) is continuous and has the periods 1 and V2.
Since the additive group generated by 1 and +/2 is dense in R, f(x) — Q(x) is constant.
This completes the induction.

That any polynomial of degree at most n — 1 with no constant term satisfies the
functional equation also follows by induction on n. Indeed, the fact that f satisfies the
equation is equivalent to the fact that g, satisfies the equation. And g,, is a polynomial
of degree n — 2.

(G. Dospinescu)

551. First solution: Assume that such functions do exist. Because g o f is a bijection, f
is one-to-one and g is onto. Since f is a one-to-one continuous function, it is monotonic,
and because g is onto but f o g is not, it follows that f maps R onto an interval [ strictly
included in R. One of the endpoints of this interval is finite, call this endpoint a. Without
loss of generality, we may assume that / = (a, o). Then as g o f is onto, g(/) = R.
This can happen only if limsup,_, . g(x) = oo and liminf, , g(x) = —oo, which
means that g oscillates in a neighborhood of infinity. But this is impossible because
f(g(x)) = x? implies that g assumes each value at most twice. Hence the question has
a negative answer; such functions do not exist.

Second solution: Since g o f is a bijection, f is one-to-one and g is onto. Note that
f(g(0)) = 0. Since g is onto, we can choose a and b with g(a) = g(0) — 1 and g(b) =
g(0) + 1. Then f(g(a)) = a®> > 0 and f(g(b)) = b> > 0. Let ¢ = min(a?, b*)/2 >
0. The intermediate value property guarantees that there is an xo € (g(a), g(0)) with
f(x9) = cand an x; € (g(0), g(b)) with f(x;) = c¢. This contradicts the fact that f is
one-to-one. Hence no such functions can exist.

(R. Gelca, second solution by R. Stong)

552. The relation from the statement implies that f is injective, so it must be monotonic.
Let us show that f is increasing. Assuming the existence of a decreasing solution f to



