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A–1 Note that if r(x) and s(x) are any two functions, then

max(r, s) = (r + s + |r − s|)/2.

Therefore, if F (x) is the given function, we have

F (x) = max{−3x− 3, 0} − max{5x, 0}+ 3x + 2

= (−3x − 3 + |3x + 3|)/2

− (5x + |5x|)/2 + 3x + 2

= |(3x + 3)/2| − |5x/2| − x +
1

2
,

so we may set f(x) = (3x + 3)/2, g(x) = 5x/2, and
h(x) = −x + 1

2 .

A–2 First solution: First factor p(x) = q(x)r(x), where q
has all real roots and r has all complex roots. Notice
that each root of q has even multiplicity, otherwise p
would have a sign change at that root. Thus q(x) has a
square root s(x).

Now write r(x) =
∏k

j=1(x − aj)(x − aj) (possible
because r has roots in complex conjugate pairs). Write
∏k

j=1(x − aj) = t(x) + iu(x) with t, x having real
coefficients. Then for x real,

p(x) = q(x)r(x)

= s(x)2(t(x) + iu(x))(t(x) + iu(x))

= (s(x)t(x))2 + (s(x)u(x))2 .

(Alternatively, one can factor r(x) as a product of
quadratic polynomials with real coefficients, write each
as a sum of squares, then multiply together to get a sum
of many squares.)
Second solution: We proceed by induction on the de-
gree of p, with base case where p has degree 0. As in
the first solution, we may reduce to a smaller degree
in case p has any real roots, so assume it has none.
Then p(x) > 0 for all real x, and since p(x) → ∞
for x → ±∞, p has a minimum value c. Now p(x) − c
has real roots, so as above, we deduce that p(x) − c is
a sum of squares. Now add one more square, namely
(
√

c)2, to get p(x) as a sum of squares.

A–3 First solution: Computing the coefficient of xn+1 in the
identity (1 − 2x − x2)

∑∞
m=0 amxm = 1 yields the

recurrence an+1 = 2an + an−1; the sequence {an}
is then characterized by this recurrence and the initial
conditions a0 = 1, a1 = 2.
Define the sequence {bn} by b2n = a2

n−1 +

a2
n, b2n+1 = an(an−1 + an+1). Then

2b2n+1 + b2n = 2anan+1 + 2an−1an + a2
n−1 + a2

n

= 2anan+1 + an−1an+1 + a2
n

= a2
n+1 + a2

n = b2n+2,

and similarly 2b2n + b2n−1 = b2n+1, so that {bn}
satisfies the same recurrence as {an}. Since further
b0 = 1, b1 = 2 (where we use the recurrence for {an}
to calculate a−1 = 0), we deduce that bn = an for all
n. In particular, a2

n + a2
n+1 = b2n+2 = a2n+2.

Second solution: Note that

1

1 − 2x − x2

=
1

2
√

2

( √
2 + 1

1 − (1 +
√

2)x
+

√
2 − 1

1 − (1 −
√

2)x

)

and that

1

1 + (1 ±
√

2)x
=

∞
∑

n=0

(1 ±
√

2)nxn,

so that

an =
1

2
√

2

(

(
√

2 + 1)n+1 − (1 −
√

2)n+1
)

.

A simple computation (omitted here) now shows that
a2

n + a2
n+1 = a2n+2.

Third solution (by Richard Stanley): Let A be the ma-

trix
(

0 1
1 2

)

. A simple induction argument shows that

An+2 =

(

an an+1

an+1 an+2

)

.

The desired result now follows from comparing the top
left corner entries of the equality An+2An+2 = A2n+4.

A–4 Denote the series by S, and let an = 3n/n. Note that

S =

∞
∑

m=1

∞
∑

n=1

1

am(am + an)

=

∞
∑

m=1

∞
∑

n=1

1

an(am + an)
,
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543. Find all functions f : (0,∞) → (0,∞) subject to the conditions
(i) f (f (f (x)))+ 2x = f (3x), for all x > 0;

(ii) limx→∞(f (x)− x) = 0.

544. Suppose that f, g : R→ R satisfy the functional equation

g(x − y) = g(x)g(y)+ f (x)f (y)

for x and y in R, and that f (t) = 1 and g(t) = 0 for some t 
= 0. Prove that f and
g satisfy

g(x + y) = g(x)g(y)− f (x)f (y)

and

f (x ± y) = f (x)g(y)± g(x)f (y)

for all real x and y.

A famous functional equation, which carries the name of Cauchy, is

f (x + y) = f (x)+ f (y).

We are looking for solutions f : R→ R.
It is straightforward that f (2x) = 2f (x), and inductively f (nx) = nf (x). Setting

y = nx, we obtain f ( 1
n
y) = 1

n
f (y). In general, if m, n are positive integers, then

f (m
n

) = mf ( 1
n
) = m

n
f (1).

On the other hand, f (0) = f (0) + f (0) implies f (0) = 0, and 0 = f (0) =
f (x) + f (−x) implies f (−x) = −f (x). We conclude that for any rational number x,
f (x) = f (1)x.

If f is continuous, then the linear functions of the form

f (x) = cx,

where c ∈ R, are the only solutions. That is because a solution is linear when restricted
to rational numbers and therefore must be linear on the whole real axis. Even if we
assume the solution f to be continuous at just one point, it still is linear. Indeed, because
f (x + y) is the translate of f (x) by f (y), f must be continuous everywhere.

But if we do not assume continuity, the situation is more complicated. In set theory
there is an independent statement called the axiom of choice, which postulates that given
a family of nonempty sets (Ai)i∈I , there is a function f : I → ∪iAi with f (i) ∈ Ai . In
other words, it is possible to select one element from each set.

Real numbers form an infinite-dimensional vector space over the rational numbers
(vectors are real numbers, scalars are rational numbers). A corollary of the axiom of
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choice (Zorn’s lemma) implies the existence of a basis for this vector space. If (ei)i∈I is
this basis, then any real number x can be expressed uniquely as

x = r1ei1 + r2ei2 + · · · + rnein,

where r1, r2, . . . , rn are nonzero rational numbers. To obtain a solution to Cauchy’s
equation, make any choice for f (ei), i ∈ I , and then extend f to all reals in such a
way that it is linear over the rationals. Most of these functions are discontinuous. As an
example, for a basis that contains the real number 1, set f (1) = 1 and f (ei) = 0 for all
other basis elements. Then this function is not continuous.

The problems below are all about Cauchy’s equation for continuous functions.

545. Let f : R→ R be a continuous nonzero function, satisfying the equation

f (x + y) = f (x)f (y), for all x, y ∈ R.

Prove that there exists c > 0 such that f (x) = cx for all x ∈ R.

546. Find all continuous functions f : R→ R satisfying

f (x + y) = f (x)+ f (y)+ f (x)f (y), for all x, y ∈ R.

547. Determine all continuous functions f : R→ R satisfying

f (x + y) = f (x)+ f (y)

1+ f (x)f (y)
, for all x, y ∈ R.

548. Find all continuous functions f : R→ R satisfying the condition

f (xy) = xf (y)+ yf (x), for all x, y ∈ R.

549. Find the continuous functions φ, f, g, h : R→ R satisfying

φ(x + y + z) = f (x)+ g(y)+ h(z),

for all real numbers x, y, z.

550. Given a positive integer n ≥ 2, find the continuous functions f : R→ R, with the
property that for any real numbers x1, x2, . . . , xn,∑

i

f (xi)−
∑
i<j

f (xi + xj )+
∑

i<j<k

f (xi + xj + xk)+ · · ·

+ (−1)n−1f (x1 + x2 + · · · + xn) = 0.
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544. We should keep in mind that f (x) = sin x and g(x) = cos x satisfy the condition.
As we proceed with the solution to the problem, we try to recover some properties of sin x

and cos x. First, note that the condition f (t) = 1 and g(t) = 0 for some t 
= 0 implies
g(0) = 1; hence g is nonconstant. Also, 0 = g(t) = g(0)g(t) + f (0)f (t) = f (0);
hence f is nonconstant. Substituting x = 0 in the relation yields g(−y) = g(y), so g

is even.
Substituting y = t , we obtain g(x − t) = f (x), with its shifted version f (x + t) =

g(x). Since g is even, it follows that f (−x) = g(x+ t). Now let us combine these facts
to obtain

f (x − y) = g(x − y − t) = g(x)g(y + t)+ f (x)f (y + t)

= g(x)f (−y)+ f (x)g(y).

Change y to −y to obtain f (x + y) = f (x)g(y) + g(x)f (y) (the addition formula
for sine).

The remaining two identities are consequences of this and the fact that f is odd. Let
us prove this fact. From g(x − (−y)) = g(x + y) = g(−x − y), we obtain

f (x)f (−y) = f (y)f (−x)

for all x and y in R. Setting y = t and x = −t yields f (−t)2 = 1, so f (−t) = ±1. The
choice f (−t) = 1 gives f (x) = f (x)f (−t) = f (−x)f (t) = f (−x); hence f is even.
But then

f (x − y) = f (x)g(−y)+ g(x)f (−y) = f (x)g(y)+ g(x)f (y) = f (x + y),

for all x and y. For x = z+w
2 , y = z−w

2 , we have f (z) = f (w), and so f is constant, a
contradiction. For f (−t) = −1, we obtain f (−x) = −f (−x)f (−t) = −f (x)f (t) =
−f (x); hence f is odd. It is now straightforward that

f (x − y) = f (x)g(y)+ g(x)f (−y) = f (x)g(y)− g(x)f (y)

and

g(x + y) = g(x − (−y)) = g(x)g(−y)+ f (x)f (−y) = g(x)g(y)− f (x)f (y),

where in the last equality we also used the fact, proved above, that g is even.
(American Mathematical Monthly, proposed by V.L. Klee, solution by P.L. Kannap-

pan)

545. Because f (x) = f 2(x/2) > 0, the function g(x) = ln f (x) is well defined. It
satisfies Cauchy’s equation and is continuous; therefore, g(x) = αx for some constant
α. We obtain f (x) = cx , with c = eα.
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We conclude our discussion about functional equations with another instance in which
continuity is important. The intermediate value property implies that a one-to-one contin-
uous function is automatically monotonic. So if we can read from a functional equation
that a function, which is assumed to be continuous, is also one-to-one, then we know that
the function is monotonic, a much more powerful property to be used in the solution.

Example. Find all continuous functions f : R→ R satisfying (f ◦ f ◦ f )(x) = x for
all x ∈ R.

Solution. For any x ∈ R, the image of f (f (x)) through f is x. This shows that f is
onto. Also, if f (x1) = f (x2) then x1 = f (f (f (x1))) = f (f (f (x2))) = x2, which
shows that f is one-to-one. Therefore, f is a continuous bijection, so it must be strictly
monotonic. If f is decreasing, then f ◦ f is increasing and f ◦ f ◦ f is decreasing,
contradicting the hypothesis. Therefore, f is strictly increasing.

Fix x and let us compare f (x) and x. There are three possibilities. First, we could have
f (x) > x. Monotonicity implies f (f (x)) > f (x) > x, and applying f again, we have
x = f (f (f (x))) > f (f (x)) > f (x) > x, impossible. Or we could have f (x) < x,
which then implies f (f (x)) < f (x) < x, and x = f (f (f (x))) < f (f (x)) < f (x) <

x, which again is impossible. Therefore, f (x) = x. Since x was arbitrary, this shows
that the unique solution to the functional equation is the identity function f (x) = x. ��
551. Do there exist continuous functions f, g : R → R such that f (g(x)) = x2 and

g(f (x)) = x3 for all x ∈ R?

552. Find all continuous functions f : R→ R with the property that

f (f (x))− 2f (x)+ x = 0, for all x ∈ R.

3.4.2 Ordinary Differential Equations of the First Order

Of far greater importance than functional equations are the differential equations, be-
cause practically every evolutionary phenomenon of the real world can be modeled by
a differential equation. This section is about first-order ordinary differential equations,
namely equations expressed in terms of an unknown one-variable function, its derivative,
and the variable. In their most general form, they are written as F (x, y, y ′) = 0, but we
will be concerned with only two classes of such equations: separable and exact.

An equation is called separable if it is of the form dy

dx
= f (x)g(y). In this case we

formally separate the variables and write∫
dy

g(y)
=
∫

f (x)dx.

After integration, we obtain the solution in implicit form, as an algebraic relation between
x and y. Here is a problem of I.V. Maftei from the 1971 Romanian Mathematical
Olympiad that applies this method.
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=
∮

C2

∂

∂z′
((x ′ − x)2 + (y ′ − y)2 + (z′ − z)2)−3/2dz′ = 0,

where the last equality is a consequence of the fundamental theorem of calculus. Of the
two, only ∂Q

∂x
has a dx ′ in it, and that part is

3
∮

C2

((x − x ′)2 + (y − y ′)2 + (z− z′)2)−5/2(x − x ′)(z− z′)dx ′

=
∮

C2

∂

∂x ′
z− z′

((x − x ′)2 + (y − y ′)2 + (z− z′)2)3/2
dx ′ = 0.

The term involving dy ′ is treated similarly. The conclusion follows.

Remark. The linking number is, in fact, an integer, which measures the number of times
the curves wind around each other. It was defined by C.F. Gauss, who used it to decide,
based on astronomical observations, whether the orbits of certain asteroids were winding
around the orbit of the earth.

535. Plugging in x = y, we find that f (0) = 0, and plugging in x = −1, y = 0, we find
that f (1) = −f (−1). Also, plugging in x = a, y = 1, and then x = a, y = −1, we
obtain

f (a2 − 1) = (a − 1)(f (a)+ f (1)),

f (a2 − 1) = (a + 1)(f (a)− f (1)).

Equating the right-hand sides and solving for f (a) gives f (a) = f (1)a for all a.
So any such function is linear. Conversely, a function of the form f (x) = kx clearly

satisfies the equation.
(Korean Mathematical Olympiad, 2000)

536. Replace z by 1− z to obtain

f (1− z)+ (1− z)f (z) = 2− z.

Combine this with f (z)+ zf (1− z) = 1+ z, and eliminate f (1− z) to obtain

(1− z+ z2)f (z) = 1− z+ z2.

Hence f (z) = 1 for all z except maybe for z = e±πi/3, when 1 − z + z2 = 0. For
α = eiπ/3, ᾱ = α2 = 1− α; hence f (α)+ αf (ᾱ) = 1+ α. We therefore have only one
constraint, namely f (ᾱ) = [1+ α − f (α)]/α = ᾱ + 1− ᾱf (α). Hence the solution to
the functional equation is of the form

f (z) = 1 for z 
= e±iπ/3,



a,b are complex numbers satisfying a2 +b2 = 1. Therefore b = (1−a2)1/2

(where the exponent 1/2 means one of the two complex numbers whose
square is 1− a2). We conclude that the matrices satisfying A = A′ = A−1

are ±I and

(
a (1−a2)1/2

(1−a2)1/2 −a

)
where a is any complex number.

4. Set R = e2πi/7 = cos2π/7+ isin2π/7. Since R �= 1 and R7 = 1, we see that
1 + R + · · ·+ R6 = 0. Now for n an integer, Rn = cos2nπ/7 + isin2nπ/7.
Thus by taking the real parts and using cos(2π− x) = cosx, cos(π− x) =
−cosx, we obtain

1+2cos
2π
7

−2cos
π
7
−2cos

3π
7

= 0.

Since cosπ/7+ cos3π/7 = 2cos(2π/7)(cosπ/7), the above becomes

4cos
2π
7

cos
π
7
−2cos

2π
7

= −1.

Finally cos(2π/7) = 2cos2(π/7)−1, hence (2cos2(π/7)−1)(4cos(π/7)−
2) = −1 and we conclude that 8cos3(π/7)− 4cos2(π/7)− 4cos(π/7) =
−1. Therefore the rational number required is −1/4.

5. Since ∠ABC +∠PQC = 90 and ∠ACB+∠PRB = 90, we see that ∠QPR =
∠ABC + ∠ACB. Now X ,Y,Z being the midpoints of BC, CA, AB respec-
tively tells us that AY is parallel to ZX , AZ is parallel to XY , and BX is paral-
lel to Y Z. We deduce that ∠ZXY = ∠BAC and hence ∠QPR+∠ZXY = 180.
Therefore the points P,Z,X ,Y lie on a circle and we deduce that ∠QPX =
∠ZY X . Using BZ parallel to XY and BX parallel to ZY from above, we con-
clude that ∠ZY X = ∠ABC. Therefore ∠QPX +∠PQX = ∠ABC+∠PQX =
90 and the result follows.

6. Set g = f 2. Note that g is continuous, g3(x) = x for all x, and f (x) = x
for all x if and only if g(x) = x for all x. Suppose y ∈ [0,1] and f (y) �=
y. Then the numbers y, f (y), f 2(y) are distinct. Replacing y with f (y) or
f 2(y) and f with g if necessary, we may assume that y < f (y) < f 2(y).
Choose a ∈ ( f (y), f 2(y)). Since f is continuous, there exists p ∈ (y, f (y))
and q ∈ ( f (y), f 2(y)) such that f (p) = a = f (q). Thus f (p) = f (q), hence
f 3(p) = f 3(q) and we deduce that p = q. This is a contradiction because
p < f (y) < q, and the result follows.
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at Q2 and proceeding counterclockwise must contain
all of Q3, . . . , Qn, while the open semicircle starting
at Qi and proceeding counterclockwise must contain
Qi+1, . . . , Qn, Q1, . . . , Qi−1. Thus two open semicir-
cles cover the entire circle, contradiction.

It follows that if the polygon has at least one acute an-
gle, then it has either one acute angle or two acute an-
gles occurring consecutively. In particular, there is a
unique pair of consecutive verticesQ1, Q2 in counter-
clockwise order for which∠Q2 is acute and∠Q1 is not
acute. Then the remaining points all lie in the arc from
the antipode ofQ1 to Q1, butQ2 cannot lie in the arc,
and the remaining points cannot all lie in the arc from
the antipode ofQ1 to the antipode ofQ2. Given the
choice ofQ1, Q2, let x be the measure of the counter-
clockwise arc fromQ1 to Q2; then the probability that
the other points fall into position is2−n+2 − xn−2 if
x ≤ 1/2 and 0 otherwise.

Hence the probability that the polygon has at least one
acute angle with agivenchoice of which two points will
act asQ1 andQ2 is∫ 1/2

0

(2−n+2 − xn−2) dx =
n− 2
n− 1

2−n+1.

Since there aren(n − 1) choices for which two points
act asQ1 andQ2, the probability of at least one acute
angle isn(n− 2)2−n+1.

Second solution:(by Calvin Lin) As in the first solu-
tion, we may compute the probability that for a particu-
lar one of the pointsQ1, the angle atQ1 is not acute but
the following angle is, and then multiply byn. Imagine
picking the points by first choosingQ1, then picking
n − 1 pairs of antipodal points and then picking one
member of each pair. LetR2, . . . , Rn be the points of
the pairs which lie in the semicircle, taken in order away
from Q1, and letS2, . . . , Sn be the antipodes of these.
Then to get the desired situation, we must choose from
the pairs to end up with all but one of theSi, and we
cannot takeRn and the otherSi or else∠Q1 will be
acute. That gives us(n− 2) good choices out of2n−1;
since we could have chosenQ1 to be any of then points,
the probability is againn(n− 2)2−n+1.

B1 TakeP (x, y) = (y − 2x)(y − 2x − 1). To see that
this works, first note that ifm = bac, then2m is an
integer less than or equal to2a, so 2m ≤ b2ac. On
the other hand,m + 1 is an integer strictly greater than
a, so2m + 2 is an integer strictly greater than2a, so
b2ac ≤ 2m + 1.

B2 By the arithmetic-harmonic mean inequality or the
Cauchy-Schwarz inequality,

(k1 + · · ·+ kn)
(

1
k1

+ · · ·+ 1
kn

)
≥ n2.

We must thus have5n − 4 ≥ n2, son ≤ 4. Without
loss of generality, we may suppose thatk1 ≤ · · · ≤ kn.

If n = 1, we must havek1 = 1, which works. Note that
hereafter we cannot havek1 = 1.

If n = 2, we have(k1, k2) ∈ {(2, 4), (3, 3)}, neither of
which work.

If n = 3, we have k1 + k2 + k3 = 11,
so 2 ≤ k1 ≤ 3. Hence (k1, k2, k3) ∈
{(2, 2, 7), (2, 3, 6), (2, 4, 5), (3, 3, 5), (3, 4, 4)}, and
only (2, 3, 6) works.

If n = 4, we must have equality in the AM-HM inequal-
ity, which only happens whenk1 = k2 = k3 = k4 = 4.

Hence the solutions aren = 1 andk1 = 1, n = 3 and
(k1, k2, k3) is a permutation of(2, 3, 6), andn = 4 and
(k1, k2, k3, k4) = (4, 4, 4, 4).
Remark: In the casesn = 2, 3, Greg Kuperberg sug-
gests the alternate approach of enumerating the solu-
tions of1/k1+· · ·+1/kn = 1 with k1 ≤ · · · ≤ kn. This
is easily done by proceeding in lexicographic order: one
obtains(2, 2) for n = 2, and(2, 3, 6), (2, 4, 4), (3, 3, 3)
for n = 3, and only(2, 3, 6) contributes to the final an-
swer.

B3 First solution: The functions are preciselyf(x) = cxd

for c, d > 0 arbitrary except that we must takec = 1
in cased = 1. To see that these work, note that
f ′(a/x) = dc(a/x)d−1 andx/f(x) = 1/(cxd−1), so
the given equation holds if and only ifdc2ad−1 = 1.
If d 6= 1, we may solve fora no matter whatc is; if
d = 1, we must havec = 1. (Thanks to Brad Rodgers
for pointing out thed = 1 restriction.)

To check that these are all solutions, putb = log(a) and
y = log(a/x); rewrite the given equation as

f(eb−y)f ′(ey) = eb−y.

Put

g(y) = log f(ey);

then the given equation rewrites as

g(b− y) + log g′(y) + g(y)− y = b− y,

or

log g′(y) = b− g(y)− g(b− y).

By the symmetry of the right side, we haveg′(b− y) =
g′(y). Hence the functiong(y) + g(b − y) has zero
derivative and so is constant, as then isg′(y). From
this we deduce thatf(x) = cxd for somec, d, both
necessarily positive sincef ′(x) > 0 for all x.

Second solution:(suggested by several people) Substi-
tutea/x for x in the given equation:

f ′(x) =
a

xf(a/x)
.

Differentiate:

f ′′(x) = − a

x2f(a/x)
+

a2f ′(a/x)
x3f(a/x)2

.
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Now substitute to eliminate evaluations ata/x:

f ′′(x) = −f ′(x)
x

+
f ′(x)2

f(x)
.

Clear denominators:

xf(x)f ′′(x) + f(x)f ′(x) = xf ′(x)2.

Divide through byf(x)2 and rearrange:

0 =
f ′(x)
f(x)

+
xf ′′(x)
f(x)

− xf ′(x)2

f(x)2
.

The right side is the derivative ofxf ′(x)/f(x), so that
quantity is constant. That is, for somed,

f ′(x)
f(x)

=
d

x
.

Integrating yieldsf(x) = cxd, as desired.

B4 First solution: Definef(m,n, k) as the number ofn-
tuples(x1, x2, . . . , xn) of integers such that|x1|+· · ·+
|xn| ≤ m and exactlyk of x1, . . . , xn are nonzero. To
choose such a tuple, we may choose thek nonzero posi-
tions, the signs of thosek numbers, and then an ordered
k-tuple of positive integers with sum≤ m. There are(
n
k

)
options for the first choice, and2k for the second.

As for the third, we have
(
m
k

)
options by a “stars and

bars” argument: depict thek-tuple by drawing a num-
ber of stars for each term, separated by bars, and adding
stars at the end to get a total ofm stars. Then each tu-
ple corresponds to placingk bars, each in a different
position behind one of them fixed stars.

We conclude that

f(m,n, k) = 2k

(
m

k

)(
n

k

)
= f(n, m, k);

summing overk givesf(m,n) = f(n, m). (One may
also extract easily a bijective interpretation of the equal-
ity.)

Second solution:(by Greg Kuperberg) It will be con-
venient to extend the definition off(m,n) to m,n ≥ 0,
in which case we havef(0,m) = f(n, 0) = 1.

Let Sm,n be the set ofn-tuples(x1, . . . , xn) of inte-
gers such that|x1| + · · · + |xn| ≤ m. Then elements
of Sm,n can be classified into three types. Tuples with
|x1| + · · · + |xn| < m also belong toSm−1,n. Tuples
with |x1| + · · · + |xn| = m andxn ≥ 0 correspond
to elements ofSm,n−1 by droppingxn. Tuples with
|x1| + · · · + |xn| = m andxn < 0 correspond to ele-
ments ofSm−1,n−1 by droppingxn. It follows that

f(m,n)
= f(m− 1, n) + f(m,n− 1) + f(m− 1, n− 1),

so f satisfies a symmetric recurrence with symmetric
boundary conditionsf(0,m) = f(n, 0) = 1. Hencef
is symmetric.

Third solution: (by Greg Martin) As in the second so-
lution, it is convenient to allowf(m, 0) = f(0, n) = 1.
Define the generating function

G(x, y) =
∞∑

m=0

∞∑
n=0

f(m,n)xmyn.

As equalities of formal power series (or convergent se-
ries on, say, the region|x|, |y| < 1

3 ), we have

G(x, y) =
∑
m≥0

∑
n≥0

xmyn
∑

k1, ..., kn∈Z
|k1|+···+|kn|≤m

1

=
∑
n≥0

yn
∑

k1, ..., kn∈Z

∑
m≥|k1|+···+|kn|

xm

=
∑
n≥0

yn
∑

k1, ..., kn∈Z

x|k1|+···+|kn|

1− x

=
1

1− x

∑
n≥0

yn

(∑
k∈Z

x|k|
)n

=
1

1− x

∑
n≥0

yn

(
1 + x

1− x

)n

=
1

1− x
· 1
1− y(1 + x)/(1− x)

=
1

1− x− y − xy
.

SinceG(x, y) = G(y, x), it follows that f(m,n) =
f(n, m) for all m,n ≥ 0.

B5 First solution: Put Q = x2
1 + · · · + x2

n. SinceQ is
homogeneous,P is divisible byQ if and only if each of
the homogeneous components ofP is divisible byQ. It
is thus sufficient to solve the problem in caseP itself is
homogeneous, say of degreed.

Suppose that we have a factorizationP = QmR for
somem > 0, whereR is homogeneous of degreed and
not divisible byQ; note that the homogeneity implies
that

n∑
i=1

xi
∂R

∂xi
= dR.

Write∇2 as shorthand for∂
2

∂x2
1

+ · · ·+ ∂2

∂x2
n

; then

0 = ∇2P

= 2mnQm−1R + Qm∇2R + 2
n∑

i=1

2mxiQ
m−1 ∂R

∂xi

= Qm∇2R + (2mn + 4md)Qm−1R.

Sincem > 0, this forcesR to be divisible byQ, con-
tradiction.

Second solution:(by Noam Elkies) Retain notation as
in the first solution. LetPd be the set of homogeneous



An alternate approach is to first rewritesinx sinx2 as
1
2 (cos(x2 − x)− cos(x2 + x). Then∫ B

0

cos(x2 + x) dx = − 2x + 1
sin(x2 + x)

∣∣∣∣B
0

−
∫ B

0

2 sin(x2 + x)
(2x + 1)2

dx

converges absolutely, and
∫ B

0
cos(x2−x) can be treated

similarly.

A–5 Leta, b, c be the distances between the points. Then the
area of the triangle with the three points as vertices is
abc/4r. On the other hand, the area of a triangle whose
vertices have integer coordinates is at least 1/2 (for ex-
ample, by Pick’s Theorem). Thusabc/4r ≥ 1/2, and
so

max{a, b, c} ≥ (abc)1/3 ≥ (2r)1/3 > r1/3.

A–6 Recall that iff(x) is a polynomial with integer coeffi-
cients, thenm−n dividesf(m)−f(n) for any integers
m andn. In particular, if we putbn = an+1 − an, then
bn divides bn+1 for all n. On the other hand, we are
given thata0 = am = 0, which implies thata1 = am+1

and sob0 = bm. If b0 = 0, thena0 = a1 = · · · = am

and we are done. Otherwise,|b0| = |b1| = |b2| = · · · ,
sobn = ±b0 for all n.

Now b0 + · · · + bm−1 = am − a0 = 0, so half of the
integersb0, . . . , bm−1 are positive and half are negative.
In particular, there exists an integer0 < k < m such
thatbk−1 = −bk, which is to say,ak−1 = ak+1. From
this it follows thatan = an+2 for all n ≥ k − 1; in
particular, form = n, we have

a0 = am = am+2 = f(f(a0)) = a2.

B–1 Consider the seven triples(a, b, c) with a, b, c ∈ {0, 1}
not all zero. Notice that ifrj , sj , tj are not all even, then
four of the sumsarj + bsj + ctj with a, b, c ∈ {0, 1}
are even and four are odd. Of course the sum with
a = b = c = 0 is even, so at least four of the seven
triples with a, b, c not all zero yield an odd sum. In
other words, at least4N of the tuples(a, b, c, j) yield
odd sums. By the pigeonhole principle, there is a triple
(a, b, c) for which at least4N/7 of the sums are odd.

B–2 Sincegcd(m,n) is an integer linear combination ofm
andn, it follows that

gcd(m,n)
n

(
n

m

)
is an integer linear combination of the integers

m

n

(
n

m

)
=

(
n− 1
m− 1

)
and

n

n

(
n

m

)
=

(
n

m

)
and hence is itself an integer.

B–3 Putfk(t) = dfk

dtk . Recall Rolle’s theorem: iff(t) is dif-
ferentiable, then between any two zeroes off(t) there
exists a zero off ′(t). This also applies when the zeroes
are not all distinct: iff has a zero of multiplicitym at
t = x, thenf ′ has a zero of multiplicity at leastm − 1
there.

Therefore, if0 ≤ a0 ≤ a1 ≤ · · · ≤ ar < 1 are the
roots of fk in [0, 1), thenfk+1 has a root in each of
the intervals(a0, a1), (a1, a2), . . . , (ar−1, ar), so long
as we adopt the convention that the empty interval(t, t)
actually contains the pointt itself. There is also a root in
the “wraparound” interval(ar, a0). ThusNk+1 ≥ Nk.

Next, note that if we setz = e2πit; then

f4k(t) =
1
2i

N∑
j=1

j4kaj(zj − z−j)

is equal toz−N times a polynomial of degree2N .
Hence as a function ofz, it has at most2N roots;
thereforefk(t) has at most2N roots in[0, 1]. That is,
Nk ≤ 2N for all N .

To establish thatNk → 2N , we make precise the ob-
servation that

fk(t) =
N∑

j=1

j4kaj sin(2πjt)

is dominated by the term withj = N . At the points
t = (2i + 1)/(2N) for i = 0, 1, . . . , N − 1, we have
N4kaN sin(2πNt) = ±N4kaN . If k is chosen large
enough so that

|aN |N4k > |a1|14k + · · ·+ |aN−1|(N − 1)4k,

then fk((2i + 1)/2N) has the same sign as
aN sin(2πNat), which is to say, the sequence
fk(1/2N), fk(3/2N), . . . alternates in sign. Thus be-
tween these points (again including the “wraparound”
interval) we find2N sign changes offk. Therefore
limk→∞Nk = 2N .

B–4 Fort real and not a multiple ofπ, write g(t) = f(cos t)
sin t .

Theng(t + π) = g(t); furthermore, the given equation
implies that

g(2t) =
f(2 cos2 t− 1)

sin(2t)
=

2(cos t)f(cos t)
sin(2t)

= g(t).

In particular, for any integern andk, we have

g(1 + nπ/2k) = g(2k + nπ) = g(2k) = g(1).

Sincef is continuous,g is continuous where it is de-
fined; but the set{1 + nπ/2k|n, k ∈ Z} is dense in the
reals, and sog must be constant on its domain. Since
g(−t) = −g(t) for all t, we must haveg(t) = 0 whent
is not a multiple ofπ. Hencef(x) = 0 for x ∈ (−1, 1).
Finally, settingx = 0 andx = 1 in the given equation
yieldsf(−1) = f(1) = 0.

2
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Alternate solution: rewrite the sum asÖ ½' L ( 3 7 Ó '�� Ï '	Ð Õ 4 Ö ½' L ( 3 7 Ó ':7 Ï '�Ð Õ . Note that Í²/?Î ¦�Í²/Z4 ) Î if and only if / � a @ 4 a for some a .
Thus /�4=ÍT/?Î and / ; Í²/?Î each increase by 1 except at/ � a @ 4 a , where the former skips from a @ 4 3 a toa @ 4 3 a 4 3 and the latter repeats the value a @ . Thus
the sums are½Ä' L ( 3 7P' ; ½

Ä
\ L ( 3 7P\ Ò 4 ½

Ä
' L ³ 3 7P' 4 ½

Ä
\ L ( 3 7P\ Ò � 3 4 )��=- >

B–4 For a rational number × +.Ø expressed in lowest terms,
define its height Ù � × +.ØM� to be

� × � 4 � Ø:� . Then for
any × +.Øj��� expressed in lowest terms, we haveÙ � G � × +.ØM�R�^��� Ø @ ; × @ � 4 � × Ø:� ; since by assumption× and

Ø
are nonzero integers with

� × � ¦�*� Ø:� , we haveÙ � G � × +CØM�R��; Ù � × +CØM�¾��� Ø @ ; × @ � 4 � × Ø:��;�� × ��;�� Ø:�º�- 4 � × Ø:��;=� × �[;=� Ø:������ × �[;�),�­��� Ø:��;�)[� 4 3 º 3 >
It follows that G Ó ' Õ ���¾� consists solely of numbers of
height strictly larger than 3 /�4 3 , and henceÚ ½' L ( G Ó ' Õ ���¾��� Û >
Note: many choices for the height function are possible:
one can take Ù � × +.ØM�
�*�^ÜMÝ|� × �Ô�M� Ø:� , or Ù � × +.ØM� equal
to the total number of prime factors of × and

Ø
, and so

on. The key properties of the height function are that
on one hand, there are only finitely many rationals with
height below any finite bound, and on the other hand,
the height function is a sufficiently “algebraic” function
of its argument that one can relate the heights of × +CØ
and G � × +.ØM� .

B–5 Note that Â ��H��<� Â � « � implies that Â � Â ��H��R�<� Â � Â � « �R�
and hence

H
� « from the given equation. That is, Â is

injective. Since Â is also continuous, Â is either strictly
increasing or strictly decreasing. Moreover, Â cannot
tend to a finite limit ® as

H�� 4 � , or else we’d haveÂ � Â ��HP����;�� Â ��H��<�*�­H , with the left side bounded and
the right side unbounded. Similarly, Â cannot tend to a
finite limit as

H��Þ;��
. Together with monotonicity,

this yields that Â is also surjective.

Pick
H ³ arbitrary, and define

H ' for all / �eß recur-
sively by

H '��#( � Â ��H ' � for /�0 _ , and
H ':79( �Â 7#( ��H ' � for /jà _ . Let n¹( �Þ��� 4 d � @ 4 ¢	���R+ 3

and n @ �����"; d � @ 4 ¢	�­�R+ 3 and n @ be the roots ofH @ ;��	HX;e�¥�£_ , so that n ( 0 _ 0án,@ and
) 0� nM( � 0 � n @ � . Then there exist âÉ( � â @ �gã such thatH ' � â ( n ' ( 4�â�@,n '@ for all / �^ß .

Suppose Â is strictly increasing. If â,@ ¦�ä_ for some
choice of

H ³ , then
H ' is dominated by n '@ for / suffi-

ciently negative. But taking
H ' and

H '�� @ for / suffi-
ciently negative of the right parity, we get

_ à H '=àH '�� @ but Â ��H ' � 0%Â ��H '�� @ � , contradiction. Thus â @ �_
; since

H ³ � âÉ( and
H ( � âÉ(�nM( , we have Â ��H���� n¹( H

for all
H

. Analogously, if Â is strictly decreasing, thenâ­@ �e_ or else
H ' is dominated by n ' ( for / sufficiently

positive. But taking
H ' and

H '�� @ for / sufficiently pos-
itive of the right parity, we get

_ à H '�� @Ëà H ' butÂ ��H '	� @ � à�Â ��H ' � , contradiction. Thus in that case,Â ��HP�¾� n,@ H for all
H

.

B–6 Yes, there must exist infinitely many such / . Let
�

be
the convex hull of the set of points

� / ��� ' � for / º�_ .
Geometrically,

�
is the intersection of all convex sets

(or even all halfplanes) containing the points
� / ��� ' � ;

algebraically,
�

is the set of points
��H#� « � which can

be written as â ( � / ( ��� ':å � 4 Y,Y[Y 4�â K � / K ��� '�æ � for someâ[( � >[>,> � â K which are nonnegative of sum 1.

We prove that for infinitely many / , � / ��� ' � is a vertex
on the upper boundary of

�
, and that these / satisfy the

given condition. The condition that
� / ��� ' � is a vertex

on the upper boundary of
�

is equivalent to the exis-
tence of a line passing through

� / ��� ' � with all other
points of

�
below it. That is, there should exist a 0 _

such that � K à � ' 4 a � N ; / � ç N ºe) > (1)

We first show that / �ä) satisfies (1). The condition� K + N �`_ as N �ä� implies that
��� K ;�� ( ��+:� N ;m),���_

as well. Thus the set
f���� K ;5� ( �R+8� N ;�),� i has an upper

bound a , and now
� K Ã=� ( 4 a � N ;�),� , as desired.

Next, we show that given one / satisfying (1), there
exists a larger one also satisfying (1). Again, the con-
dition

� K + N � _
as N � �

implies that
��� K ;� ' �R+:� N ; / �Z� _ as N � � . Thus the sequencef���� K ;Ì� ' ��+:� N ; / � i K.è ' has a maximum element; sup-

pose N � n is the largest value of N that achieves this
maximum, and put a �h���Cé!;¥� ' ��+:� n ; / � . Then the
line through

� n ����é,� of slope a lies strictly above
� N ��� K �

for N 0*n and passes through or lies above
� N ��� K � for

3



Real Analysis 583

f (eiπ/3) = β,

f (e−iπ/3) = ᾱ + 1− ᾱβ,

where β is an arbitrary complex parameter.
(20th W.L. Putnam Competition, 1959)

537. Successively, we obtain

f (−1) = f

(
−1

2

)
= f

(
−1

3

)
= · · · = lim

n→∞ f

(
−1

n

)
= f (0).

Hence f (x) = f (0) for x ∈ {0,−1,− 1
2 , . . . ,− 1

n
, . . . }.

If x 
= 0,−1, . . . ,− 1
n
, . . . , replacing x by x

1+x
in the functional equation, we obtain

f

(
x

1+ x

)
= f

(
x

1+x

1− x
1+x

)
= f (x).

And this can be iterated to yield

f

(
x

1+ nx

)
= f (x), n = 1, 2, 3 . . . .

Because f is continuous at 0 it follows that

f (x) = lim
n→∞ f

(
x

1+ nx

)
= f (0).

This shows that only constant functions satisfy the functional equation.

538. Plugging in x = t, y = 0, z = 0 gives

f (t)+ f (0)+ f (t) ≥ 3f (t),

or f (0) ≥ f (t) for all real numbers t . Plugging in x = t
2 , y = t

2 , z = − t
2 gives

f (t)+ f (0)+ f (0) ≥ 3f (0),

or f (t) ≥ f (0) for all real numbers t . Hence f (t) = f (0) for all t , so f must be
constant. Conversely, any constant function f clearly satisfies the given condition.

(Russian Mathematical Olympiad, 2000)

539. No! In fact, we will prove a more general result.

Proposition. Let S be a set and g : S → S a function that has exactly two fixed points
{a, b} and such that g ◦ g has exactly four fixed points {a, b, c, d}. Then there is no
function f : S → S such that g = f ◦ f .
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Proof. Let g(c) = y. Then c = g(g(c)) = g(y); hence y = g(c) = g(g(y)). Thus y is
a fixed point of g ◦ g. If y = a, then a = g(a) = g(y) = c, leading to a contradiction.
Similarly, y = b forces c = b. If y = c, then c = g(y) = g(c), so c is a fixed point of
g, again a contradiction. It follows that y = d, i.e., g(c) = d, and similarly g(d) = c.

Suppose there is f : S → S such that f ◦ f = g. Then f ◦ g = f ◦ f ◦ f = g ◦ f .
Then f (a) = f (g(a)) = g(f (a)), so f (a) is a fixed point of g. Examining case by
case, we conclude that f ({a, b}) ⊂ {a, b} and f ({a, b, c, d}) ⊂ {a, b, c, d}. Because
f ◦ f = g, the inclusions are, in fact, equalities.

Consider f (c). If f (c) = a, then f (a) = f (f (c)) = g(c) = d, a contradiction
since f (a) is in {a, b}. Similarly, we rule out f (c) = b. Of course, c is not a fixed point
of f , since it is not a fixed point of g. We are left with the only possibility f (c) = d.
But then f (d) = f (f (c)) = g(c) = d, and this again cannot happen because d is not a
fixed point of g. We conclude that such a function f cannot exist.

In the particular case of our problem, g(x) = x2 − 2 has the fixed points −1 and
2, and g(g(x)) = (x2 − 2)2 − 2 has the fixed points −1, 2, −1+√5

2 , and −1−√5
2 . This

completes the solution.
(B.J. Venkatachala, Functional Equations: A Problem Solving Approach, Prism

Books PVT Ltd., 2002)

540. The standard approach is to substitute particular values for x and y. The solution
found by the student S.P. Tungare does quite the opposite. It introduces an additional
variable z. The solution proceeds as follows:

f (x + y + z)

= f (x)f (y + z)− c sin x sin(y + z)

= f (x)[f (y)f (z)− c sin y sin z] − c sin x sin y cos z− c sin x cos y sin z

= f (x)f (y)f (z)− cf (x) sin y sin z− c sin x sin y cos z− c sin x cos y sin z.

Because obviously f (x + y + z) = f (y + x + z), it follows that we must have

sin z[f (x) sin y − f (y) sin x] = sin z[cos x sin y − cos y sin x].
Substitute z = π

2 to obtain

f (x) sin y − f (y) sin x = cos x sin y − cos y sin x.

For x = π and y not an integer multiple of π , we obtain sin y[f (π)+ 1] = 0, and hence
f (π) = −1.

Then, substituting in the original equation x = y = π
2 yields

f (π) =
[
f
(π

2

)]
− c,
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It follows that f (x + xn) − f (x) is a polynomial of degree n − 2 for all xn. In
particular, there exist polynomials P1(x) and P2(x) such that f (x + 1)− f (x) = P1(x),
and f (x + √2) − f (x) = P2(x). Note that for any a, the linear map from the vector
space of polynomials of degree at most n − 1 to the vector space of polynomials of
degree at most n− 2, P (x) → P (x + a)− P (x), has kernel the one-dimensional space
of constant polynomials (the only periodic polynomials). Because the first vector space
has dimension n and the second has dimension n− 1, the map is onto. Hence there exist
polynomials Q1(x) and Q2(x) of degree at most n− 1 such that

Q1(x + 1)−Q1(x) = P1(x) = f (x + 1)− f (x),

Q2(x +√2)−Q2(x) = P2(x) = f (x +√2)− f (x).

We deduce that the functions f (x)−Q1(x) and f (x)−Q2(x) are continuous and periodic,
hence bounded. Their difference Q1(x)−Q2(x) is a bounded polynomial, hence constant.
Consequently, the function f (x) −Q1(x) is continuous and has the periods 1 and

√
2.

Since the additive group generated by 1 and
√

2 is dense in R, f (x)−Q1(x) is constant.
This completes the induction.

That any polynomial of degree at most n − 1 with no constant term satisfies the
functional equation also follows by induction on n. Indeed, the fact that f satisfies the
equation is equivalent to the fact that gxn

satisfies the equation. And gxn
is a polynomial

of degree n− 2.
(G. Dospinescu)

551. First solution: Assume that such functions do exist. Because g ◦ f is a bijection, f

is one-to-one and g is onto. Since f is a one-to-one continuous function, it is monotonic,
and because g is onto but f ◦ g is not, it follows that f maps R onto an interval I strictly
included inR. One of the endpoints of this interval is finite, call this endpoint a. Without
loss of generality, we may assume that I = (a,∞). Then as g ◦ f is onto, g(I) = R.
This can happen only if lim supx→∞ g(x) = ∞ and lim inf x→∞ g(x) = −∞, which
means that g oscillates in a neighborhood of infinity. But this is impossible because
f (g(x)) = x2 implies that g assumes each value at most twice. Hence the question has
a negative answer; such functions do not exist.

Second solution: Since g ◦ f is a bijection, f is one-to-one and g is onto. Note that
f (g(0)) = 0. Since g is onto, we can choose a and b with g(a) = g(0)− 1 and g(b) =
g(0) + 1. Then f (g(a)) = a2 > 0 and f (g(b)) = b2 > 0. Let c = min(a2, b2)/2 >

0. The intermediate value property guarantees that there is an x0 ∈ (g(a), g(0)) with
f (x0) = c and an x1 ∈ (g(0), g(b)) with f (x1) = c. This contradicts the fact that f is
one-to-one. Hence no such functions can exist.

(R. Gelca, second solution by R. Stong)

552. The relation from the statement implies that f is injective, so it must be monotonic.
Let us show that f is increasing. Assuming the existence of a decreasing solution f to


